Erdölraffinerie
Geschichte
Die ersten Raffinerien entstanden schon Mitte des 19. Jahrhunderts. Der erste Raffineriebetrieb wurde 1856 von Ignacy Łukasiewicz, in Ulaszowice (Polen) eingerichtet. Nachdem diese von einem Feuer vernichtet wurde, wurde in Chorkówka eine weitere, modernere Raffinerie gebaut. Sehr schnell begannen die aus Erdöl gewonnenen Leuchtöle, die bis dahin aus Tierfetten, insbesondere Waltran, gewonnenen Lampenbrennstoffe zu ersetzen, wozu zunächst eine Aufbereitung des Erdöls durch Destillation notwendig war.
Die Destillation des gewonnenen Erdöls fand auf eine sehr einfache Weise statt. Dazu wurde ein Kupferkessel mit etwa 750 Liter Erdöl gefüllt und der Kesselinhalt zum Sieden gebracht. Die entstehenden Dämpfe wurden durch ein Kühlrohrsystem geleitet, in dem sie kondensierten. Auf diese Weise wurde Petroleum, welches zu Beleuchtungszwecken in Petroleumlampen diente, gewonnen. Der im Kessel verbliebene teerartige Rückstand wurde als Abfall entsorgt.
Die Verwertung weiterer aus dem Erdöl gewonnener Produkte und insbesondere die schnelle Verbreitung der Verbrennungsmotoren nach dem Ersten Weltkrieg erforderte nicht nur den Bau zahlreicher neuer Raffinerien, sondern führte auch zu einer rasanten Weiterentwicklung der in einer Raffinerie verwendeten Verfahren.
Wie in vielen anderen Industriezweigen haben sich die Anforderungen an eine Raffinerie, insbesondere an die Produkte im Laufe der Jahre geändert. Grundsätzlich ist hier das Anpassen der Produktspezifikation zu nennen, die sich in den letzten Jahren aufgrund der Gesetze (Umwelt und Gesundheit) geändert haben. So sank der erlaubte Schwefelgehalt bei den Kraftstoffen sowie beim Heizöl. Bei den Vergaserkraftstoffen sanken die Benzol- und die Aromatenspezifikationen.
Produkte
Die Fertigprodukte können gasförmig, flüssig oder fest sein.
Prozentual gestaltet sich die Ausbeute einer modernen Raffinerie in etwa wie folgt:
Flüssiggas (Propan, Butan) | 3% |
Rohbenzin, Naphtha | 9% |
Benzin (Otto-Kraftstoff) | 24% |
Flugturbinenkraftstoff, Kerosin | 4% |
Dieselkraftstoff | 21% |
leichtes Heizöl | 21% |
schweres Heizöl | 11% |
Bitumen | 3,5% |
Schmierstoffe | 1,5% |
sonstige Produkte, Eigenverbrauch, Verluste | 2% |
Die Mengenanteile an Fertigprodukten sind einerseits von den eingesetzten Rohölsorten, andererseits von den in der Raffinerie vorhandenen Verarbeitungsanlagen abhängig. So enthalten "leichte" Rohöle relativ hohe Anteile an leichten Produkten, d.h. solche mit geringer Dichte (Flüssiggas, Kerosin, Benzin, Diesel), "schwere" Rohöle dagegen größere Anteile an schweren Produkten, wie schweres Heizöl und Bitumen. In modernen Raffinerien kann ein Teil dieser schweren Bestandteile in leichtere umgewandelt werden (z.B. durch "Cracken"), sodass eine solche Raffinerie mehr schweres Rohöl verarbeiten kann.
Technik
Das aus den Lagerstätten gewonnene Erdöl wird vor Ort für den Transport zur Raffinerie aufbereitet, d.h., im Wesentlichen grob von Sedimenten und Wasser getrennt. Nach diesen ersten Verarbeitungsschritten, es heißt nun Rohöl, wird es per Schiff oder Pipeline zur Raffinerie geliefert. Hier wird das Flüssigkeitsgemisch in weiteren Schritten in unterschiedliche Fraktionen getrennt und zu verkaufsfähigen Produkten aufbereitet. Die Technik ist heute so weit fortgeschritten, dass keine Stoffe des Rohöls ungenutzt bleiben. Selbst das als unerwünschtes Nebenprodukt anfallende Raffineriegas findet Verwendung. Es wird entweder direkt in den Prozessöfen als Energieträger benutzt oder in der chemischen Weiterverarbeitung als Synthesegas eingesetzt.
Erdölreinigung/Entsalzung
Das Erdöl/Rohöl wird bereits an der Lagerstätte von Sand und Wasser befreit. Um Korrosion in den Anlagen vorzubeugen, wird das Rohöl entsalzt (auf Salzgehalte < 10 ppm), indem unter Zusatz von Wasser eine Rohöl-Wasser-Emulsion hergestellt wird. Das Salz löst sich in der wässrigen Phase dieser Emulsion. Die Emulsion wird dann in einem elektrostatischen Entsalzer wieder getrennt, wobei das Wasser mit den Salzen entsprechenden Aufbereitungsanlagen zugeführt wird und das entsalzte Rohöl weiter zur Destillation gepumpt wird.
Primärverarbeitung
Nach der Entsalzung wird das Rohöl in zwei Stufen erwärmt. Die Vorwärmung geschieht in Wärmetauschern durch Wärmerückgewinnung von ablaufendem Produkt. Die Spitzenvorheizung erfolgt durch Öfen bis auf etwa 400 °C. Das erhitzte Öl wird durch Rektifikation in einer bis zu 50 m hohen Kolonne in seine Bestandteile aufgetrennt. Das Rohöl tritt in einer 2-Phasen-Strömung (Gas/Flüssig) in die Kolonne ein. Das Temperaturprofil fällt nach oben hin ab, da die Temperatur im Sumpf am höchsten ist und die leichten Bestandteile somit nicht kondensieren, steigen die leichten Bestandteile gasförmig weiter nach oben. Im Kopf der Kolonne fällt Gas und Leichtbenzin (Naphtha) an, darunter Kerosin, Zwischenprodukt für Treibstoffe turbinengetriebener Luftfahrzeuge (nicht zu verwechseln mit dem so genannten "Flugbenzin", dem AVGAS für Flugzeugottomotoren), Dieselkraftstoff und leichtes Heizöl. Weiter unten Gasöl (Heizöl- und Diesel-Ausgangsstoffe) und im Sumpf — dem Fuß der Kolonne — der atmosphärische Rückstand (engl.: Long Residue). Diese erste Rektifikation findet bei atmosphärischem Druck statt und wird daher atmosphärische Rektifikation genannt. Der Rückstand wird in einer weiteren Rektifikationskolonne bei Vakuum erneut destilliert, um ihn in weitere Produkte aufzutrennen . Eine Vakuumrektifikation ist nötig, da die Kettenlänge der schwersiedenden Kohlenwasserstoffe (KWs) größer ist und diese KWs bei hohen Temperaturen (ab ca. 400 °C) eher dazu neigen thermisch zu cracken als sich destillativ trennen zu lassen. Die Produkte der Vakuumdestillation sind Vakuumgasöl und sogenannter Vakuumrückstand (engl.: Short Residue).
Konversionsverfahren
Nach der Primärverarbeitung wird eine Reihe von Veredlungsverfahren angewendet, um Katalysatorschadstoffe abzutrennen und um die Qualität der Zwischenprodukte zu verbessern — fast alle Mineralölprodukte, welche die Raffinerie verlassen sind nicht nur einfach aus Erdöl destilliert/rektifiziert. So werden Motorenbenzin, Dieselkraftstoff, Heizöl (extraleicht) für Immobilien und das für Industrieanlagen (Heizöl schwer) aus verschiedenen Zwischenprodukten/Komponenten zusammengemischt (geblendet), die bei unten genannten Herstellungsprozessen erzeugt werden.
Hydrotreating, Claus-Verfahren
Die bei der fraktionierten Destillation anfallenden Schmier- und Heizöle sind noch reich an Schwefelverbindungen. Diese würden bei der Verbrennung giftiges Schwefeldioxid freisetzen, das auch für das Waldsterben mitverantwortlich sein soll. Beim Hydrofining werden die zu entschwefelnden Öle mit Wasserstoff vermischt und erhitzt. Das heiße Gemisch gelangt in einen mit Katalysatoren aus Nickel, Molybdän oder Cobalt auf Aluminiumoxid gefüllten Reaktor. Bei einer Temperatur von ca. 350 °C reagiert der Wasserstoff mit den Schwefel-, Stickstoff- und Sauerstoffverbindungen zu Schwefelwasserstoff, Ammoniak und Wasser.
Beim nachfolgenden Claus-Verfahren wird der angefallene Schwefelwasserstoff mit Luftsauerstoff in einem Reaktor verbrannt. Es lässt sich dabei reiner Schwefel gewinnen:
Katalytisches Reforming
Das katalytische Reforming, auch Platforming (aus Platin und Reforming) genannt, hat zum Ziel, die Oktanzahl des Rohbenzins (Siedebereich 75-180 °C) zu erhöhen und aromatische Kohlenwasserstoffe zu erzeugen. Weiterhin erhält man Wasserstoff als Produkt, der in den Hydrotreating-Prozessen und in Hydrocracking-Prozessen eingesetzt wird. Bis zur Entdeckung des katalytischen Reformings im Jahre 1948 durch V. Haensel bei Universal Oil Products (UOP) waren die Reforming-Prozesse überwiegend thermischer Natur. Ein von Standard Oil entwickeltes Reforming-Verfahren auf Basis molybdänhaltiger Katalysatoren wurde bald durch die wesentlich stabileren Platinkontakte ersetzt. Das Reforming läuft bei ca. 500 °C und 5-40 bar in einem Wanderbettreaktor ab. Eingesetzt werden dabei bifunktionelle Katalysatoren (Platin-Zinn oder Platin-Rhenium, auf chloriertem Aluminiumoxid oder Zeolithen).
Cracken
Es gibt drei Hauptgruppen beim Cracken: thermisches, katalytisches und Hydrocracken.
Beim thermischen Cracken werden keine Katalysatoren eingesetzt. Dadurch können auch Rückstände der Erdöldestillation zugeführt werden (z. B. beim Visbreaking), die wegen ihres Gehalts an Schwermetallen und Schwefel den Katalysator beim katalytischen Cracken beschädigen würden. Es können aber auch Naphtha, Gasöl oder sogar hydrogenierte Vakuumgasöle (Hydrowax, Hydrocracker Bottoms) durch das sogenannte Steamcracken thermisch gecrackt werden, um Ethen, Propen und Aromaten zu erzeugen.
Beim katalytischen Cracken (FCC) dienen saure Silikate als Katalysatoren, Edukte sind schwere atmosphärte Steamcracken thermisch gecrackt werden, um Ethen, Propen und Aromaten zu erzeugen.
Beim katalytischen Cracken (FCC) dienen saure Silikate als Katalysatoren, Edukte sind schwere atmosphärische Gasöle bzw. Vakuumgasöl, als Produkte fallen überwiegend kurzkettige Alkene an.
Beim Hydrocracken werden langkettige Alkane unter Wasserstoffzufuhr in kurzkettige Alkane überführt. Bei höheren Wasserstoffpartialdrücken werden sogar Aromaten hydrogeniert und somit auch Cycloalkane erzeugt.
Seite zurück
© biancahoegel.de;
Datum der letzten Änderung: Jena, den: 12.05. 2022