Areatangens hyperbolicus und Areakotangens hyperbolicus
Areatangens hyperbolicus und Areakotangens hyperbolicus sind die Umkehrfunktionen von Tangens hyperbolicus und Kotangens hyperbolicus und damit Area-Funktionen.
Schreibweisen:
Letztere wird seltener benutzt, um die Verwechslung mit dem Kehrwert des hyperbolischen (Ko-)Tangens zu vermeiden. Es ist .
Definitionen
Areatangens hyperbolicus:
Areakotangens hyperbolicus:
Geometrische Definitionen
Geometrisch lässt sich der Areatangens hyperbolicus durch die Fläche in der Ebene darstellen, welche die Verbindungsstrecke zwischen dem Koordinatenursprung und der Hyperbel überstreicht: Es seien und Start- und Endpunkt auf der Hyperbel, dann wird von der Verbindungsstrecke die Fläche überstrichen.
Eigenschaften
|
| |
Areatangens hyperbolicus | Areakotangens hyperbolicus | |
---|---|---|
Definitionsbereich | ||
Wertebereich | ||
Periodizität | keine | keine |
Monotonie | streng monoton steigend | keine |
Symmetrien | ungerade Funktion: | ungerade Funktion: |
Asymptoten | ||
Nullstellen | keine | |
Sprungstellen | keine | keine |
Polstellen | ||
Extrema | keine | keine |
Wendepunkte | keine |
Reihenentwicklungen
Taylor- und Laurent-Reihen der beiden Funktionen sind
Ableitungen
Integrale
Die Stammfunktionen lauten:
Additionstheoreme
Siehe auch
© biancahoegel.de
Datum der letzten Änderung: Jena, den: 17.02. 2020