Satz von Ionescu-Tulcea
Der Satz von Ionescu-Tulcea ist ein mathematischer Satz der Wahrscheinlichkeitstheorie, der sich mit der Existenz von Wahrscheinlichkeitsmaßen für Wahrscheinlichkeitsexperimente beschäftigt, die aus abzählbar unendlich vielen Einzelexperimenten bestehen. Insbesondere können die Einzelexperimente dabei voneinander verschieden und abhängig sein. Somit geht die Aussage über die bloße Existenz von abzählbaren Produktmaßen hinaus. Der Satz wurde von Cassius Ionescu-Tulcea bewiesen.
Aussage
Gegeben sei ein Wahrscheinlichkeitsraum sowie Messräume für . Mit der Notation
seien Markow-Kerne
gegeben für . Dann existieren die durch das Produkt der Kerne
definierte Wahrscheinlichkeitsmaße auf und es gibt ein eindeutig definiertes Wahrscheinlichkeitsmaß auf , so dass
gilt für alle und .
Verwendung
Der Satz von Ionescu-Tulcea findet weitreichende Verwendung. Beispielsweise liefert er die Existenz beliebiger zeitdiskreter stochastischer Prozesse. Alternativ kann man ihn auch verwenden, um die Existenz von unendlichen Produktmaßen oder von abzählbaren Familien von stochastisch unabhängigen Zufallsvariablen zu zeigen.
Verallgemeinerungen
Eine Verallgemeinerung der Satzes von Ionescu-Tulcea ist der Erweiterungssatz von Kolmogorow, der sich mit der Existenz von Wahrscheinlichkeitsmaßen auf überabzählbaren Produkträumen beschäftigt.
Basierend auf einem Artikel in: Wikipedia.de Seite zurück© biancahoegel.de
Datum der letzten Änderung: Jena, den: 13.08. 2018