Gradientenfeld
Ein Gradientenfeld ist ein Vektorfeld, das aus einem Skalarfeld durch Differentiation nach dem Ort abgeleitet wurde, bzw. – kürzer formuliert – der Gradient des Skalarfelds.
Zur besseren Abgrenzung zwischen dem Gradienten als mathematischem Operator und dem Resultat seiner Anwendung bezeichnen manche Autoren die Vektoren, aus denen sich Gradientenfelder zusammensetzen, auch als Gradientvektoren, andere dagegen mit Blick auf die Potentiale, aus denen sie sich herleiten, als Potentialvektoren.
Analog verwendet die überwiegende Zahl der Autoren den Begriff Potentialfeld nicht für das skalare Feld des Potentials selbst, sondern das sich aus ihm ableitende Gradientenfeld.
Definition und Eigenschaften
Ein Vektorfeld
heißt Gradientenfeld, wenn es ein Skalarfeld
gibt, so dass
gilt. Dabei nennt man
das zu
gehörige Skalarpotential
oder einfach kurz das „Potential“ des Gradientenfelds
.
Der Begriff darf jedoch nicht mit dem physikalischen Begriff des „Potentials“
verwechselt werden, mit dem die Fähigkeit eines konservativen
Kraftfelds bezeichnet wird, einen dem Feld ausgesetzten Körper eine Arbeit
verrichten zu lassen.
Physikalische Potentiale sind dabei stets auch Potentiale im Sinne der Mathematik, wenn damit die entsprechenden Ortsfunktionen (Felder) und nicht nur deren Funktionswerte gemeint sind. Jedoch ist umgekehrt nicht jedes mathematische Potential auch eines im o.g. physikalischen Sinn, etwa das der potentiellen Energie oder das Geschwindigkeitspotential.
Vektorfelder, die Gradienten eines Skalarfelds sind, werden in Anlehnung an den Begriff des „konservativen Kraftfelds“ oft auch als konservative Vektorfelder bezeichnet - ihnen allen gemeinsam sind dabei die folgenden drei einander äquivalenten Eigenschaften:
- Wegunabhängigkeit des Kurvenintegrals:
Der Wert des Kurvenintegrals entlang einer beliebigen Kurve
innerhalb des Feldes ist nur von ihrem Anfangs- und Endpunkt abhängig, nicht dagegen von ihrer Länge.
- Verschwinden des Ringintegrals
für beliebige Randkurven
:
- Generelle Rotationsfreiheit bzw. Wirbelfreiheit
des Feldes:
Beispiele

Skalarfelder (Potentialfelder) (gelb):
VG - Gravitationspotential
Wpot - potentielle Energie
VC - Coulomb-Potential
Vektorfelder (Gradientenfelder) (cyan):
aG - Gravitationsbeschleunigung
F - Kraft
E - elektrische Feldstärke
Leitet man das Feld der potentiellen Energie ,
wie in der nebenstehenden Abb. gezeigt, nach dem Ort
ab,
erhält man den Energiegradienten
,
also ein Vektorfeld, dessen einzelne Vektoren dabei in die Richtung der jeweils
stärksten Zunahme von
an der Stelle
zeigen. Dem Prinzip
des kleinsten Zwanges folgend, sind die diesem Gradienten entgegengesetzten
Vektoren
nichts anderes als die jeweils in Richtung des steilsten Gefälles von
zeigenden „rücktreibenden“ Kräfte
(Gravitationskraft)
und
(Coulombkraft)
.
Division des Energiegradienten
durch die Skalare m bzw. q liefert analog die Potentialgradienten
(Gravitationspotential)
und
(Coulomb-Potential),
deren einzelne Vektoren dabei abermals in Richtung der jeweils stärksten Zunahme
des Potentials an der Stelle
zeigen. Die ihnen entgegengesetzten Vektoren
und
heißen Gravitationsbeschleunigung bzw. elektrische Feldstärke.
Vorzeichen
Handelt es sich bei dem zugrundeliegenden Skalarpotential
auch um ein Potential im physikalischen Sinne (s.o.), beschreibt es also
ein tatsächliches physikalisches Arbeitsvermögen,
wird das sich aus ihm ergebende Gradientenfeld, wie gerade begründet, stets mit
einem (der Zunahme des Betrags von
entgegengesetzten) negativem Vorzeichen
geschrieben. Bei Skalarfeldern dagegen, die sich nur mathematisch wie Potentiale
verhalten, etwa dem Strömungs-
oder Geschwindigkeitspotential, das damit auch keine potentielle Energie
repräsentiert, ist das Vorzeichen seines Gradienten undefiniert und wird für
gewöhnlich positiv gewählt:
- Kraft - Potentielle Energie:
- Elektrische Feldstärke - Coulomb-Potential:
- Gravitationsbeschleunigung - Gravitationspotential:
- aber
- Geschwindigkeit - Geschwindigkeitspotential:
Integrabilitätsbedingung
Ist
eine offene und einfach
zusammenhängende (zum Beispiel sternförmige)
Menge und
stetig
differenzierbar, so ist
genau dann ein Gradientenfeld, wenn die Integrabilitätsbedingungen
für alle
auf
erfüllt ist. Die Aussage erhält man als Spezialfall aus dem Poincaré-Lemma.
Im Zwei- und Dreidimensionalen lauten die Integrabilitätsbedingungen:
- Für
:
- Für
:
Äquivalent dazu ist in beiden Fällen die Bedingung ,
also dass die Rotation
verschwindet.
Auf Gebieten, die nicht einfach zusammenhängend sind, sind diese Integrabilitätsbedingungen zwar notwendig, aber im Allgemeinen nicht hinreichend.



© biancahoegel.de
Datum der letzten Änderung: Jena, den: 17.12. 2020