Symmetrie (Geometrie)

Symmetrie und Asymmetrie
Symmetrie in der Architektur...
... und in der Biologie.
Leonardo da Vincis "vitruvianischer Mensch"

Mit dem geometrischen Begriff Symmetrie (altgriechisch συμμετρία symmetria „Ebenmaß, Gleichmaß“, aus σύν syn „zusammen“ und μέτρον metron „Maß“) bezeichnet man die Eigenschaft, dass ein geometrisches Objekt durch Bewegungen auf sich selbst abgebildet werden kann, also unverändert erscheint. Eine Umwandlung, die ein Objekt auf sich selbst abbildet, heißt Symmetrieabbildung oder Symmetrieoperation.

Manchmal werden auch zwei (oder mehr) verschiedene geometrische Objekte als zueinander symmetrisch bezeichnet, wenn sie, zusammen betrachtet, eine symmetrische Figur bilden.

Abhängig von der Zahl der betrachteten Dimensionen gibt es folgende unterschiedliche Symmetrien:

Symmetrien im Eindimensionalen

Im Eindimensionalen, also auf einer Geraden, gibt es die Symmetrie bezüglich eines einzelnen Punktes sowie die Symmetrie bezüglich Translation (Verschiebung).

Symmetrien im Zweidimensionalen

Im Zweidimensionalen muss zwischen Punkt- und Achsensymmetrie unterschieden werden. Daneben treten auch hier Translationssymmetrien auf.

Rotationssymmetrie

Zweidimensionale Objekte sind rotationssymmetrisch, wenn eine Drehung um jeden beliebigen Winkel um einen Punkt das Objekt auf sich selbst abbildet. Diese Symmetrie wird auch als Dreh-, Punkt- oder Kreissymmetrie bezeichnet.

Achsensymmetrie

Hauptartikel: Achsensymmetrie
Achsensymmetrische Objekte in der Ebene

Die Achsensymmetrie, axiale Symmetrie oder Spiegelsymmetrie ist eine Form der Symmetrie, die bei Dingen auftritt, die entlang einer Symmetrieachse gespiegelt sind. Für jede Achsenspiegelung gilt:

  1. Figur und Bildfigur sind deckungsgleich zueinander.
  2. Strecke und Bildstrecke sind gleich lang.
  3. Winkel und Bildwinkel sind gleich groß.
  4. Figur und Bildfigur haben verschiedenen Umlaufsinn.

Beispiele

Achsensymmetrie von Funktionsgraphen

Achsensymmetrischer Funktionsgraph

Eine vor allem in der Schulmathematik beliebte Aufgabenstellung besteht darin, für den Graphen einer Funktion die Achsensymmetrie nachzuweisen. Dieser Nachweis ist besonders einfach im Falle der Symmetrie bezüglich der y-Achse des (kartesischen) Koordinatensystems. Eine Funktion ist achsensymmetrisch bezüglich der y-Achse, wenn gilt:

f(-x) \, = \, f(x)

Ist sie für alle x gültig, liegt Achsensymmetrie vor, das heißt f ist eine gerade Funktion.

Diese Bedingung läuft darauf hinaus, dass die Funktionswerte für die entgegengesetzt gleichen Argumente x und -x übereinstimmen müssen.

Allgemeiner gilt: Der Graph einer Funktion f ist genau dann achsensymmetrisch bezüglich der Geraden mit der Gleichung x = a, wenn die folgende Bedingung für beliebige Werte von x richtig ist:

f(a-x) \, = \, f(a+x)

Durch Substitution von x mit x-a erhält man die äquivalente Bedingung:

f(2a-x) \, = \, f(x)

Punktsymmetrie

Punktsymmetrische Objekte in der Ebene
Hauptartikel: Punktsymmetrie

Die Punktsymmetrie, auch Zentralsymmetrie, ist eine Eigenschaft geometrischer Objekte. Ein geometrisches Objekt (z. B. ein Viereck) heißt (in sich) punktsymmetrisch, wenn es eine Punktspiegelung gibt, die dieses Objekt auf sich abbildet. Der Punkt, an dem diese Spiegelung erfolgt, wird als Symmetriezentrum bezeichnet.

Beispiele

Punktsymmetrie von Funktionsgraphen

Punktsymmetrischer Funktionsgraph

Eine vor allem in der Schulmathematik häufige Aufgabenstellung besteht darin nachzuweisen, dass der Graph einer gegebenen Funktion punktsymmetrisch ist. Dieser Nachweis kann mit der folgenden Formel geführt werden:

f(a+x) - b= - f(a-x) + b .

Ist diese Gleichung für alle x erfüllt, liegt Punktsymmetrie zum Punkt (a,b) vor. Im Spezialfall von Punktsymmetrie um dem Ursprung (0,0) vereinfacht sich diese Gleichung zu:

f(-x)  =  -f(x).

Ist sie für alle x gültig, dann liegt Punktsymmetrie in Bezug auf den Koordinatenursprung vor.

Translationssymmetrie

Figuren, die durch eine Verschiebung oder Translation (die nicht die Identität ist) in sich selbst überführt werden, haben eine Translationssymmetrie. Sie werden auch als periodisch bezeichnet.

Symmetrien im Dreidimensionalen

Symmetrie beim Seestern: fünfzählige Drehachse und vertikale Spiegelebenen (Punktgruppe C5v nach Schoenflies)

In der Natur

Der Aufbau der meisten höheren Lebewesen ist mehr oder weniger annähernd spiegelsymmetrisch (bei niederen Lebensformen findet sich oft Achsensymmetrie, diese bilden somit einen angenäherten Rotationskörper). Auch der Mensch verfügt über eine vertikale Symmetrieebene, die anatomische Sagittalebene. Diese Symmetrie ist dabei jedoch nicht vollständig, so ist der Aufbau der inneren Organe nicht spiegelsymmetrisch. Auch die scheinbar zueinander symmetrischen Körperteile wie Augen, Ohren, Arme, Beine, Brüste etc. weisen untereinander immer mehr oder weniger große Lage-, Form- und Größenunterschiede auf.

Entsprechungen zu zweidimensionalen Symmetrieelementen

Der Achsensymmetrie im Zweidimensionalen entspricht die Flächensymmetrie im Dreidimensionalen, der Punktsymmetrie die Achsensymmetrie (Drehsymmetrie um 180°). Daneben gibt es noch die Punkt-/ Zentralsymmetrie im Raum und wie in der Ebene Translationssymmetrien.

Rotationssymmetrie

Dreidimensionale Objekte sind rotationssymmetrisch, wenn eine Drehung um jeden beliebigen Winkel um eine Achse (die Symmetrieachse) das Objekt auf sich selbst abbildet.

Rotationssymmetrie um eine Achse wird auch als Zylindersymmetrie bezeichnet. Dreidimensionale geometrische Objekte mit dieser Eigenschaft nennt man auch Rotationskörper.

Kugelsymmetrie

Hauptartikel: Radialsymmetrie

Rotationssymmetrie um jede beliebige Achse durch denselben Punkt ist ein Spezialfall der Rotationssymmetrie und wird als Kugelsymmetrie bzw. Radialsymmetrie bezeichnet.

Sterne sind z. B. annähernd kugelsymmetrisch, da deren Eigenschaften (wie z. B. die Dichte) zwar nicht überall gleich sind, aber nur vom Abstand zum Mittelpunkt abhängen.

Auch deren Schwerefelder sowie z. B. das elektrische Feld einer geladenen Kugel sind kugelsymmetrisch.

Kombinationen

Aus der Möglichkeit, Symmetrieoperationen zu kombinieren, lassen sich die symmetrischen Grundoperationen herleiten:

  1. Identität (Null-Operation, keine Veränderung)
  2. Rotation (Drehung)
  3. Rotation – Inversion (Drehspiegelung)
  4. Translation (Verschiebung)
  5. Gleitspiegelung
  6. Schraubung

Siehe auch

Trenner
Basierend auf einem Artikel in: externer Link Wikipedia.de
Seitenende
Seite zurück
©  biancahoegel.de
Datum der letzten Änderung: Jena, den: 12.01. 2020