Bahngeschwindigkeit (Astronomie)
In der Himmelsmechanik bezeichnet Bahngeschwindigkeit die Geschwindigkeit, mit der sich ein astronomisches Objekt bewegt. Bei Umlaufbahnen spricht man auch von Orbitalgeschwindigkeit oder Umlaufgeschwindigkeit.
Die Bewegung wird in einem geeigneten Koordinaten- oder Bezugsystem angegeben, im Regelfall im Schwerpunktsystem der beteiligten Himmelskörper:
- Baryzentrum des Sonnensystems bei Planeten, Asteroiden und Kometen
- Baryzentrum des Erde-Mond-Systems oder des betreffenden Planeten
- Galaktisches Zentrum für Bewegungen innerhalb der Milchstraße
- oder einem genäherten Inertialsystem für spezielle Untersuchungen.
Bahngeschwindigkeit der idealen Keplerbahn
Begegnet ein kleiner Körper im Weltall einem großen, so ist seine Bahnkurve infolge der Gravitation – im idealisierten Fall des Zweikörperproblems – eine Keplerbahn (Ellipse, Hyperbel oder Parabel) um den großen Himmelskörper bzw. um den gemeinsamen Schwerpunkt. Aufgrund der Energieerhaltung ist die Bahngeschwindigkeit nicht konstant, sondern nimmt zu, wenn der Abstand zwischen den Körpern kleiner wird. Johannes Kepler entdeckte, dass zwar Abstand und Bahngeschwindigkeit variieren, aber der Fahrstrahl (die Verbindungslinie zwischen Gravizentrum und umlaufendem Körper) in gleicher Zeit die gleiche Fläche überstreicht (Zweites Keplergesetz, Konstanz der Flächengeschwindigkeit). Seine Lösung gilt nur für das Zweikörperproblem (Keplerproblem) selbst, die Einschränkung auf kugelsymmetrische Körper und nur als nichtrelativistische Näherung. Außerdem gibt sie immer die Relativgeschwindigkeit bezüglich des Gravizentrums, nie eine absolute Geschwindigkeit an. [1]
Für den Spezialfall eines kreisförmigen Orbits bringt die Anziehungskraft zwischen den Himmelskörpern jeweils gerade die für die Kreisbahn notwendige Zentripetalkraft auf, wodurch die Geschwindigkeit festgelegt (und betragsmäßig konstant) ist.
Die Strecke entlang der Keplerbahn, die für den direkten
Weg-Zeit-Zusammenhang (Geschwindigkeit = Weg je Zeit )
gebraucht wird, besitzt nur in Spezialfällen eine analytische
Lösung. Durch Betrachtung von kinetischer
und potentieller
Energie gelingt die Herleitung der Vis-Viva-Gleichung.
Sie stellt eine Verbindung zwischen der Masse
des Zentralkörpers, der Gravitationskonstanten
,
der großen
Halbachse
der Umlaufellipse, der Entfernung
des umlaufenden Probekörpers
und der Geschwindigkeit
dieses Probekörpers her:
Unter Berücksichtigung der Masse
des umlaufenden Körpers gilt:
Für die Kreisbahn und die Parabelbahn ergibt sich mit der Gesamtmasse :
Unterhalb ()
und oberhalb (
)
dieser beiden Grenzfälle liegen Spiral- und hyperbolische Bahnen (Sturz auf
einen und Verlassen eines Himmelskörpers beziehungsweise Passagen). Zwischen den
beiden Werten (
)
ergeben sich Ellipsenbahnen.
Für die beiden Hauptscheitel der Ellipse gibt es aber auch analytische Lösungen:
… Winkelgeschwindigkeit im Perizentrum (gravizentrumsnächster Punkt)
… Winkelgeschwindigkeit im Apozentrum (gravizentrumsfernster Punkt)
… mittlere Winkelgeschwindigkeit, Winkelgeschwindigkeit eines Körpers auf einer umlaufperiodengleichen Kreisbahn = mittlere Anomalie (nach Kepler)
… Umlaufdauer
… große Halbachse der Bahnellipse
… lineare Exzentrizität
… Halbparameter
… kleine Halbachse der Bahnellipse
Aus der Vis-Viva-Gleichung ergibt sich:
… Perizentrumsgeschwindigkeit
… Apozentrumsgeschwindigkeit
Die Perizentrumsgeschwindigkeit ist die maximale, die Apozentrumsgeschwindigkeit die minimale Bahngeschwindigkeit. Da die Bewegung in den Hauptscheiteln tangential verläuft, ist in beiden Fällen der spezifische Drehimpuls bequem abzulesen, der auf der gesamten Bahn konstant ist:
Somit kann die Geschwindigkeit
eines äquivalenten Kreisorbits (mittlere Anomalie, jedoch mit gleichem
spezifischen Drehimpuls
)
mit
ermittelt werden:
Durch Einsetzen von
ergibt sich die jeweilige Bahngeschwindigkeit mit der Entfernung
zum zweiten Brennpunkt:
In den Nebenscheiteln ergibt sich die Geschwindigkeit:
Mittlere Orbitalgeschwindigkeit
Die mittlere Orbitalgeschwindigkeit ergibt sich aus dem Zusammenhang
Weg pro Zeit. Der Umfang der Ellipse ist nicht geschlossen bestimmbar; es gilt
mit dem elliptischen
Integral 2. Art :
Mit zunehmender Exzentrizität
sinkt die mittlere Bahngeschwindigkeit bei gleichem spezifischen Drehimpuls
.
Eine einfache Näherung für die Umlaufgeschwindigkeit ist darüber hinaus
,
die somit für kleine Exzentrizitäten genauer ist als der Abbruch nach dem in
quadratischen Term.
Orbitalgeschwindigkeiten künstlicher Erdsatelliten
Die Bahngeschwindigkeiten bei Satelliten, die nahezu kreisförmige Bahnen haben, beträgt, je nach Klasse des Satellitenorbits:
- auf Low Earth Orbits (LEO) oberhalb von 200 km Flughöhe etwa 7 km/s (25.000 km/h)
- auf Medium Earth Orbits (MEO) oberhalb von etwa 3.000 km unter 6 km/s
- auf geostationärem Orbit (GEO, 42.164 km Bahnradius, 35.786 km über Äquator) etwa 3 km/s (11.000 km/h)
Typische Trägerraketen
leisten eine Antriebskapazität
von 7–11 km/s.
Die Brenndauer des Systems ist ganz von der Technik, also dem Schub (Beschleunigung) abhängig,
um dann insgesamt die nötige Geschwindigkeit (1. kosmische Geschwindigkeit
der Erde) für eine stabile Bahn zu erreichen. Das gilt auch für die unten
genannten Antriebssysteme.
Im Unterschied zum keplerschen Idealfall sind Satelliten besonders bei
niedrigen Orbits einer deutlichen Bremskraft durch Reibung in der Hochatmosphäre
unterworfen, wodurch die Bahnhöhe laufend sinkt und die mittlere
Winkelgeschwindigkeit zunimmt. Daher wird standardmäßig zum Satellitenbahnelement
Mittlere
Bewegung
zumindest ein siebentes Bahnelement angegeben, etwa
- die Bremswirkung
(als Änderung der mittleren Bewegung, Sinkrate je Zeiteinheit)
- oder ein ballistischer Koeffizient
, über den sich der Geschwindigkeitsverlust berechnen lässt.
Um aber dem Wiedereintritt (Verglühen in der Atmosphäre) vorzubeugen, müssen regelmäßig Bahnkorrekturen vorgenommen werden. Deshalb sind viele Satelliten mit Antriebssystemen ausgestattet, deren Brennstoffvorrat aber die Lebensdauer begrenzt. Sie leisten 10–600 m/s, also ein 10.000stel bis 10tel der Trägerrakete, je nach Bahnhöhe der Mission.
Daneben gibt es zahlreiche andere Störgrößen, die weitere Bahnkorrekturen und eine Lageregelung mit Leistungen um 20 m/s erfordern. Dabei sind – bei einem geostationären Satelliten – für den Gravitationseinfluss von Erde und Mond 40–51 m/s pro Jahr notwendig, für den Strahlungsdruck der Sonne (Sonnenwind) bis zu 30 m/s pro Jahr, die sonstigen Störungen bleiben im einstelligen Bereich.
Bei manchen Missionen wird auch eine explizite Bahnänderung notwendig, wofür Systeme mit 1 bis einige km/s Antriebskapazität notwendig sind. Triebwerke für diese Aufgabe werden nicht wie Bahnkorrektur- und Lageregelungssysteme zu den Sekundär-, sondern wie die Triebwerke der Trägerrakete zu den Primärsystemen gerechnet.
Bahngeschwindigkeiten von Kleinkörpern und Raumfahrtmissionen
Unter Kleinkörpern fasst man Asteroiden (Kleinplaneten), Kometen und Meteoroide zusammen. Die meisten Asteroiden laufen – als reguläre Objekte des Sonnensystems – auf kreisähnlichen Ellipsen wie die Planeten, wenngleich mit größeren Bahnneigungen. Daneben gibt es aber zahlreiche irreguläre Objekte auf stark exzentrischen Ellipsen und aperiodische Objekte auf Hyperbelbahnen. Wegen ihrer Kleinheit sind die meisten noch unentdeckt, und eine genaue Bahnbestimmung ist bei einmaliger Beobachtung oft nicht möglich.
Eine entscheidende Größe für die Herkunft dieser Körper ist die Fluchtgeschwindigkeit
zur Sonne (beziehungsweise der Gesamtmasse des Sonnensystems). Diese liegt auf
Höhe der Erdbahn bei 42 km/s, also etwa 150.000 km/h (dritte
kosmische Geschwindigkeit), bis zur Sonnenoberfläche wächst sie auf
620 km/s (2,2 Mio. km/h) an. Alle Objekte, die schneller sind,
verlassen das Sonnensystem, entweder durch starke Bahnstörungen, oder sie sind
tatsächlich extrasolarer
Herkunft. Die Fluchtgeschwindigkeit nimmt – nach eingangs genannten
Formeln – mit
als der Entfernung zur Sonne ab: So reicht den Voyager-Sonden,
die inzwischen weit jenseits der Saturnbahn sind, eine Geschwindigkeit, die
kleiner ist als die Umlaufgeschwindigkeit der Erde, um das Sonnensystem zu
verlassen.
Dafür ist aber ein eigener Antrieb notwendig, oder ein Geschwindigkeitsgewinn
nach außen, wie er durch Swing-by-Manöver
erreicht werden kann (die Voyagers wurden durch den Swing-by am Saturn um rund
18 km/s beschleunigt). Auch durch heftige Kollisionen können manche
Kleinkörper das Sonnensystem verlassen.
Bei Erdbahnkreuzern, einschließlich Meteoren und Meteorströmen (Sternschnuppenschwärme), gibt man abweichend zum Obigen nicht eine baryzentrische Geschwindigkeit an, sondern die relevantere Relativgeschwindigkeit zur Erde. Je nach Eintreffwinkel zur Erdbahn haben diese Objekte Geschwindigkeiten zwischen 11,2 (Nachläufer) bis 72 km/s (Frontaltreffer).
Bahngeschwindigkeiten von Kometen
Bei langgestreckten Kometenbahnen sind die Geschwindigkeiten äußerst unterschiedlich. Als Beispiel sei der Komet Halley genannt, dessen Ellipse mit 76 Jahren Umlaufzeit von innerhalb der Venusbahn bis jenseits des Neptun reicht. Im Perihel (0,59 AE) bewegt er sich mit 55 km/s, im Aphel (35 AE) nur mit 0,9 km/s, weshalb er jahrzehntelang jenseits der Saturnbahn verweilt und unbeobachtbar ist. Noch extremer sind „Jahrhundertkometen“ aus der Oort’schen Wolke, die von dort mit wenigen m/s Richtung Sonne driften können und sie schließlich (wie McNaught Anfang 2007) mit über 100 km/s umrunden.
Beispiele
- Mittlere Bahngeschwindigkeit der Erde
(um die Sonne/Baryzentrum des Sonnensystems):
- Mittlere Bahngeschwindigkeit des Mondes (um den Erde-Mond-Schwerpunkt):
- Zum Vergleich: Umlaufgeschwindigkeit um die Sonne: dieselbe wie die Erde ± 3,4 % mensal (monatlich)
- Bahngeschwindigkeit der ISS
(um die Erde):
- Zum Vergleich: Relativgeschwindigkeit (zum Beobachter
auf der Erdoberfläche):
- Zum Vergleich: Relativgeschwindigkeit (zum Beobachter
auf der Erdoberfläche):
- Bahngeschwindigkeit der Voyager-1-Sonde
(zur Sonne):
- Bahngeschwindigkeit des Kometen Tempel-Tuttle im
Perihel (also um die Sonne):
- Zum Vergleich: Relativgeschwindigkeit der Leoniden,
des von ihm erzeugten Meteorstroms, zur Erde:
– also 250-fache Schallgeschwindigkeit[3]
- Zum Vergleich: Relativgeschwindigkeit der Leoniden,
des von ihm erzeugten Meteorstroms, zur Erde:
- Bahngeschwindigkeit des Sonnensystems
(um das galaktische Zentrum):
- Zum Vergleich: Bahngeschwindigkeit der Erde um das galaktische Zentrum: dieselbe wie Sonne ±12 % annual (jährlich)
Literatur
- Hans Rolf Henkel: Astronomie – Ein Grundkurs. Verlag Harry Deutsch, Frankfurt/Main 1991.
Siehe auch
Anmerkungen
- ↑ Eine absolute Geschwindigkeit gibt es nicht: Die Erde umläuft die Sonne, diese das galaktische Zentrum, die Milchstraße bewegt sich im Mehrkörperproblem der lokalen Gruppe, diese im Gravitationsfeld der Großstrukturen, und das Universum expandiert insgesamt: In der Astronomie gibt es keinen ausgezeichneten Nullpunkt, zu dem man Bewegungen „absolut“ messen könnte. Der Nullpunkt ist immer problembezogen: im Sonnensystem dessen Baryzentrum, bei Satelliten und Mond die Erde, bei Jupitermonden der Jupiter, bei Doppelsternen deren Schwerpunkt. Aussagen über andere als Relativgeschwindigkeiten zum Baryzentrum sind eher belanglos, siehe Geschwindigkeit und Bezugssystem. Ausnahmen sind z.B. Relativgeschwindigkeiten zum Beobachter (meist also zur Erde), oder allgemein Kollisionsgeschwindigkeiten.
- ↑
Ein mittlerer Erdumfang von ca. 40.000 km in
ca. 24 h; die Geschwindigkeit ist breitenabhängig
,
= geographische Breite; am Pol ist sie 0.
- ↑ Grobe Abschätzung, die Machzahl nimmt mit der Temperatur rapide ab. In der Höhe von 80 km, in der Sternschnuppen üblicherweise verglühen, ist sie nicht dieselbe wie am Boden.



© biancahoegel.de
Datum der letzten Änderung: Jena, den: 24.07. 2021