Δ-Baryon

Delta-Baryon (Δ+++0)

Klassifikation
Fermion
Hadron
Baryon
Eigenschaften
elektrische Ladung 0, ±1 oder +2 e
Ruheenergie ≈1232 MeV
SpinParität 32+
Isospin 32   (Iz = ±3/2,±1/2)
Zerfallsbreite ≈118 MeV
Quark-
Zusammensetzung
uuu, uud, udd, ddd

Die Δ-Baryonen (Delta-Baryonen) oder Delta-Resonanzen sind Baryonen, die aus Up- und Down-Quarks bestehen. Sie besitzen Spin und Isospin 3/2.

Es gibt vier verschiedene Δ-Baryonen, die meist durch ihre elektrische Ladung gekennzeichnet werden:  Δ++, Δ+, Δ0 und Δ.
Δ+ und Δ0 bestehen aus den gleichen Quarks wie die Nukleonen Proton und Neutron und können deshalb als deren Spinanregung aufgefasst werden.

Es wurde als erste Pion-Nukleon-Resonanz 1951 am Zyklotron in Chicago von Herbert L. Anderson, Enrico Fermi, E. A. Long und Darrah E. Nagle entdeckt. Beobachtet wurde eine Resonanz bei einer Energie der an Protonen gestreuten Pionen von etwa 180 MeV. Sie wurde von Keith Brueckner mit dem Isospin-Modell von Pionen und Nukleonen erklärt.

Beschreibung

Das SU(3)-Baryon-Dekuplett.

Die vier Δ-Baryonen gehören dem SU(3)-Dekuplett an. Sie unterscheiden sich durch ihren Quarkinhalt, welcher abstrakt als Isospin-3/2-Vektor im Flavourraum aufgefasst werden kann. Der Quarkinhalt der Δ-Baryonen lautet

Symbol Quarkinhalt Isospin-z-Komponente
Δ++ uuu +3/2
Δ+ uud +1/2
Δ0 udd −1/2
Δ ddd −3/2

Δ-Baryonen zerfallen zu nahezu 100 % in ein Nukleon und ein Pion. Ein sehr geringer Anteil (< 1 %) zerfällt unter Aussenden eines Photons in ein Nukleon.

Besonderheiten

Betrachtet man nur die Spin- und Flavour-Anteile, stellen die Δ-Baryonen Δ++ und Δ scheinbar eine Verletzung des Pauli-Prinzips dar. Als Fermionen müssten sie nämlich eine anti-symmetrische Wellenfunktion besitzen, ihre Spin- und Flavour-Wellenfunktionen sind jedoch komplett symmetrisch, z.B.

\Delta ^{{++}}=u(+)u(+)u(+),

wo u\, für Up-Quark steht und + für die Spin-Projektion.

Dieses Problem kann dadurch gelöst werden, dass ein weiterer Freiheitsgrad für Quarks postuliert wird, die sogenannte Farbladung. Führt man diese neue Quantenzahl ein, so erhält man

\Delta ^{{++}}=\Sigma \,\varepsilon _{{gbr}}\,u^{g}(+)u^{b}(+)u^{r}(+)

mit dem Levi-Civita-Symbol \varepsilon _{{gbr}} und den Farbfreiheitsgraden g,b\, und r\, (grün, blau, rot). Damit ist die Wellenfunktion wieder anti-symmetrisch.

So trugen die Δ-Baryonen zur Entwicklung der Quantenchromodynamik bei.

Heute sind die Δ-Baryonen weiterhin von theoretischem Interesse, da sich an ihnen, analog zu den ρ-Mesonen, Modelle der Dynamik der starken Kraft testen lassen.

Trenner
Basierend auf einem Artikel in: Extern Wikipedia.de
Seitenende
Seite zurück
© biancahoegel.de
Datum der letzten Änderung: Jena, den: 07.11. 2021