Absolutstetige Wahrscheinlichkeitsverteilung
Die Absolutstetigen (Wahrscheinlichkeits-)verteilungen, auch absolutstetige Wahrscheinlichkeitsmaße genannt sind eine spezielle Klasse von Wahrscheinlichkeitsmaßen in der Stochastik. Sie zeichnen sich dadurch aus, dass sie über ein Integral und eine Wahrscheinlichkeitsdichtefunktion definiert bzw. dargestellt werden können.
Sie sind zwar eng mit den stetigen Wahrscheinlichkeitsverteilungen verwandt, aber nicht mit ihnen identisch.
Definition
Ein Wahrscheinlichkeitsmaß
auf
heißt absolutstetig, wenn es absolutstetig
bezüglich des Lebesgue-Maßes
ist.
Das bedeutet, dass jede
-Nullmenge
auch eine
-Nullmenge
ist.
Nach dem Satz
von Radon-Nikodým ist dies äquivalent dazu, dass
eine Wahrscheinlichkeitsdichtefunktion
besitzt. Das bedeutet, es gilt für alle
mit
.
Bemerkung
Streng genommen müsste man die Wahrscheinlichkeitsdichtefunktion so definieren, dass klar ist, dass es sich um eine Dichte bezüglich des Lebesgue-Maßes handelt. In der Stochastik sind jedoch Dichten bezüglich anderer Maße als des Lebesgue-Maßes selten, daher wird oft auf die Angabe verzichtet.
Bei dem Integral handelt es sich streng genommen um ein Lebesgue-Integral.
Häufig wird dieses jedoch wie hier durch ein Riemann-Integral
ersetzt, dann schreibt man
anstelle von
.
Abgrenzung zu den stetigen Wahrscheinlichkeitsverteilungen
Als stetige
Wahrscheinlichkeitsverteilungen werden diejenigen
Wahrscheinlichkeitsverteilungen bezeichnet, die eine stetige Verteilungsfunktion
besitzen.
Auf Maße übertragen bedeutet das, dass die stetigen
Wahrscheinlichkeitsverteilungen atomlos sind, also
keine einzelnen Punkte
mit
besitzen.
Nach der Lebesgue-Zerlegung lassen sich atomlose Maße weiter aufspalten:
- In einen absolutstetigen Anteil. Dieser entspricht den absolutstetigen Wahrscheinlichkeitsverteilungen.
- In einen singulären Anteil. Dieser entspricht den stetigsingulären Wahrscheinlichkeitsverteilungen.
Somit ist jede absolutstetige Wahrscheinlichkeitsverteilung immer eine stetige Wahrscheinlichkeitsverteilung. Aber nicht jede stetige Wahrscheinlichkeitsverteilung ist eine absolutstetige Wahrscheinlichkeitsverteilung. Beispiel hierfür ist die Cantor-Verteilung: Ihre Verteilungsfunktion ist stetig, aber sie besitzt keine Wahrscheinlichkeitsdichtefunktion.



© biancahoegel.de
Datum der letzten Änderung: Jena, den: 21.01. 2018