Knotentheorie

Projektion des Kleeblattknotens

Die Knotentheorie ist ein Forschungsgebiet der Topologie. Sie beschäftigt sich unter anderem damit, die topologischen Eigenschaften von Knoten zu untersuchen. Eine Fragestellung ist etwa, ob zwei gegebene Knoten äquivalent sind, also ob sie ineinander überführt werden können, ohne dass dabei die Schnur „zerschnitten“ wird. Die Knotentheorie beschäftigt sich im Gegensatz zur Knotenkunde nicht mit dem Knüpfen von Knoten in der Praxis, sondern mit mathematischen Eigenschaften von Knoten.

Mathematische Definition

Man nehme ein verknotetes Stück Schnur und verklebe die beiden Enden; in der Fachsprache heißt das Ergebnis eine Einbettung der Kreislinie in den dreidimensionalen Raum. Zwei Knoten gelten als gleich, wenn sie durch eine stetige Verformung ineinander überführt werden können (Isotopie).

In der Knotentheorie werden auch Einbettungen von mehreren Kreislinien untersucht; diese nennt man Verschlingungen (Links). Eine andere Erweiterung des Themas sind mehrdimensionale Knoten, das heißt Einbettungen der Sphären der Dimension n in den n+2-dimensionalen Raum für n>1.

Eine dreidimensionale geschlossene glatte Kurve, die nicht verknotet ist und damit isotop zur Kreislinie, heißt Unknoten oder trivialer Knoten.

Technische Details: zahme Knoten und ambiente Isotopie

Streng genommen muss die obige Definition an zwei Stellen nachgebessert werden, um dem herkömmlichen Knotenbegriff zu entsprechen, denn:

Es gibt zwei Wege, diese Probleme zu beheben:

  1. Man ersetzt Isotopie durch ambiente Isotopie und beschränkt sich auf zahme Knoten: Bei einer ambienten Isotopie muss auch der Raum um den Knoten sich stetig deformieren; ein Knoten heißt zahm, falls er zu einem stückweise linearen Knoten ambient isotop ist.
  2. Man beschränkt sich auf glatte Isotopien zwischen glatten Knoten, denn jeder stetig differenzierbare Knoten ist zahm, und jede glatte Isotopie lässt sich zu einer ambienten Isotopie fortsetzen.

Beide Lösungen sind äquivalent. Im Weiteren gelten alle Knoten als zahm.

Knotendiagramme und Reidemeister-Bewegungen

In der Knotentheorie wird ein Knoten oft durch seine Projektion auf eine Ebene dargestellt. Jeder (zahme) Knoten hat eine reguläre Projektion, d.h. eine Projektion mit nur endlich vielen Doppelpunkten (Kreuzungen).

Um aus einer Projektion den Knoten rekonstruieren zu können, muss man bei jeder Kreuzung angeben, welcher der beiden Stränge oben bzw. unten liegt. Eine Projektion mit dieser Zusatzinformation nennt man ein Knotendiagramm. Jeder zahme Knoten lässt sich somit durch ein Diagramm darstellen. Ein solches Diagramm ist jedoch nicht eindeutig, denn jeder Knoten lässt sich durch unendlich viele verschiedene Diagramme darstellen. Zum Beispiel ändern die folgenden lokalen Züge zwar das Diagramm, nicht aber den dargestellten Knoten:

Die drei Bewegungstypen („Reidemeister-Bewegungen“)
Reidemeister move 1.png;     Reidemeister move 2.png;     Reidemeister move 3.png.
Typ I   Typ II Typ III

Diese Züge werden Reidemeister-Bewegungen genannt, zu Ehren von Kurt Reidemeister. Dieser hat 1927 gezeigt, dass diese drei Züge bereits ausreichen: Zwei Knotendiagramme stellen genau dann den gleichen Knoten dar, wenn sie durch eine endliche Folge von Reidemeister-Bewegungen ineinander überführt werden können.

Knoteninvarianten

Zwei Knoten können sehr unterschiedlich aussehen und trotzdem im obigen Sinne gleich sein. Folglich kann es schwierig sein, direkt nachzuweisen, dass zwei Knoten nicht gleich sind. Daher wählt man einen indirekten Weg: Knoteninvarianten.

Eine Knoteninvariante ordnet jedem Knoten eine Zahl (oder ein Polynom oder eine Gruppe usw.) zu, und zwar so, dass der Wert sich nicht ändert, wenn man den Knoten im dreidimensionalen Raum stetig deformiert. Anders gesagt: Man ordnet jedem Knotendiagramm einen Wert zu, und zwar so, dass die Reidemeister-Züge den Wert nicht ändern. Beispiele:

Bis heute ist noch keine einfach berechenbare Knoteninvariante gefunden worden, die alle nicht-äquivalenten Knoten unterscheidet, also für zwei Knoten genau dann identisch ist, wenn diese äquivalent sind. Eine solche zu finden, ist ein wichtiges Ziel der aktuellen Forschung. Es ist auch unbekannt, ob das Jones-Polynom den trivialen Knoten erkennt, also ob es einen nicht-trivialen Knoten gibt, dessen Jones-Polynom gleich dem des trivialen Knoten ist.

Typen von Knoten

Anwendungen

Lange Zeit war die Beschäftigung mit Knoten eher von rein theoretischem Interesse. Mittlerweile existieren aber eine Reihe wichtiger Anwendungen, etwa in der Biochemie bzw. Strukturbiologie, mit denen überprüft werden kann, ob komplizierte Faltungen von Proteinen mit anderen Proteinen übereinstimmen. Ähnliches gilt für DNA. Weitere aktuelle Anwendungen gibt es in der Polymerphysik. Eine wichtige Stellung nimmt die Knotentheorie in der modernen theoretischen Physik ein, wo es etwa um Pfade in Feynmandiagrammen geht.

Die Knotentheorie wird auch in benachbarten Gebieten der Topologie und Geometrie genutzt. Zur Untersuchung 3-dimensionaler Räume sind Knoten sehr nützlich, da sich jede orientierbare geschlossene 3-dimensionale Mannigfaltigkeit durch Dehn-Chirurgie an einem Knoten oder einer Verschlingung erzeugen lässt. In der hyperbolischen Geometrie spielen Knoten eine Rolle, weil die Komplemente der meisten Knoten in der 3-dimensionalen Sphäre S^{3} eine vollständige hyperbolische Metrik tragen.

Literatur

Trenner
Basierend auf einem Artikel in: Wikipedia.de
Seitenende
Seite zurück
© biancahoegel.de
Datum der letzten Änderung: Jena, den: 18.04. 2023