Markow-Ungleichung (Stochastik)
Die Markow-Ungleichung, auch Markow'sche Ungleichung oder Ungleichung von Markow genannt, ist eine Ungleichung in der Stochastik, einem Teilgebiet der Mathematik. Sie ist nach Andrei Andrejewitsch Markow benannt. Sein Name und der der Ungleichung ist in der Literatur auch in den Schreibungen Markoff oder Markov zu finden. Die Ungleichung gibt eine obere Schranke für die Wahrscheinlichkeit an, dass eine Zufallsvariable eine vorgegebene reelle Zahl überschreitet.
Satz
Es seien ein Wahrscheinlichkeitsraum, eine reellwertige Zufallsvariable, eine reelle Konstante und ferner eine monoton wachsende Funktion gegeben. Die Definitionsmenge von enthalte außerdem die Bildmenge von . Die allgemeine Markow-Ungleichung besagt dann:
was man für zu
umschreiben kann.
Beweis
Sei die Indikatorfunktion der Menge . Dann gilt:
Varianten
- Setzt man für und betrachtet die reelle Zufallsvariable , so erhält man für den bekannten Spezialfall der Markow-Ungleichung
- Betrachtet man für ein , so folgt der bekannte Spezialfall der Markow-Ungleichung, welcher die Wahrscheinlichkeit für das -fache Übertreffen des Erwartungswertes begrenzt:
- Ist und wendet man die Markow-Ungleichung auf eine Zufallsvariable an, so erhält man für eine Version der Tschebyscheff-Ungleichung:
- Für beschränkte Zufallsvariablen existiert die folgende Markow-artige Schranke für die Wahrscheinlichkeit, dass eine Zufallsvariable ihren Erwartungswert um den Faktor unterbietet. D.h., seien und sei eine Zufallsvariable mit und . Dann gilt für alle :
- Der Beweis dieser Aussage ist ähnlich dem Beweis der Markow-Ungleichung.
- Wählt man , erhält man für geeignetes eine sehr gute Abschätzung, siehe auch Chernoff-Ungleichung. Man kann zeigen, dass diese Abschätzung unter gewissen Voraussetzungen sogar optimal ist.
© biancahoegel.de
Datum der letzten Änderung: Jena, den: 11.04. 2020