Fehler 1. und 2. Art

Die Fehler 1. und 2. Art, auch α-Fehler (Alpha-Fehler) und β-Fehler (Beta-Fehler) genannt, bezeichnen eine statistische Fehlentscheidung. Sie beziehen sich auf eine Methode der mathematischen Statistik, den sogenannten Hypothesentest. Beim Test einer Hypothese liegt ein Fehler 1. Art vor, wenn die Nullhypothese zurückgewiesen wird, obwohl sie in Wirklichkeit wahr ist (beruhend auf falsch positiven Ergebnissen). Dagegen bedeutet ein Fehler 2. Art, dass der Test die Nullhypothese fälschlicherweise bestätigt, obwohl die Alternativhypothese korrekt ist.

Entscheidungstabelle

  H0 ist richtig H1 ist richtig
Durch einen statistischen Test fällt eine Entscheidung für H0 Richtige Entscheidung (Spezifität)
Wahrscheinlichkeit: 1 - α
Fehler 2. Art
Wahrscheinlichkeit: β
Durch einen statistischen Test fällt eine Entscheidung für H1 Fehler 1. Art
Wahrscheinlichkeit: α
richtige Entscheidung
Wahrscheinlichkeit: 1-β (Power, Sensitivität)

Hinweis: Sowohl Beta (wie auch Alpha) repräsentieren bedingte Wahrscheinlichkeiten:

{\displaystyle \operatorname {Pr} (T\in A|H_{0})\;=:\alpha } und
{\displaystyle \operatorname {Pr} (T\not \in A|{\overline {H}}_{0})\;=:\beta },

wobei A den Ablehnbereich und T die für den Test benutzte Teststatistik bezeichnet.

Fehler 1. Art

Beim Test einer Hypothese liegt ein Fehler 1. Art vor, wenn die Nullhypothese zurückgewiesen wird, obwohl sie in Wirklichkeit wahr ist (beruhend auf falsch positive Ergebnissen).

Die Ausgangshypothese H_{0} (Nullhypothese) ist hierbei die Annahme, die Testsituation befinde sich im „Normalzustand“. Wird also dieser „Normalzustand“ nicht erkannt, obwohl er tatsächlich vorliegt, ergibt sich ein Fehler 1. Art. Beispiele für einen Fehler 1. Art sind:

Die vor einem Test bzw. einer Untersuchung festgelegte maximale Wahrscheinlichkeit, bei einer auf dem Ergebnis des Tests fußenden Entscheidung einen solchen Fehler 1. Art zu begehen (Risiko 1. Art), nennt man auch Signifikanzniveau oder Irrtumswahrscheinlichkeit. In der Regel wählt man ein Signifikanzniveau von 5 % (signifikant) oder 1 % (sehr signifikant).

Die andere mögliche Fehlentscheidung, nämlich die Alternativhypothese H_{1} zurückzuweisen, obwohl sie wahr ist, heißt Fehler 2. Art.

Beispiele

Fehler 2. Art

Im Gegensatz zum Fehler 1. Art bedeutet ein Fehler 2. Art, dass der Test die Nullhypothese fälschlicherweise bestätigt, obwohl die Alternativhypothese korrekt ist.

Schwierigkeiten bei der Bestimmung des Fehlers 2. Art

Darstellung möglicher Werte der Wahrscheinlichkeit eines Fehlers 2. Art (rot) am Beispiel eines Signifikanztests über den Erwartungswert μ. Da der Fehler 2. Art von der Lage des Nichtzentralitätsparameter (hier \mu _{1}) abhängt, \mu _{1} jedoch bei Annahme der Alternativhypothese i.d.R. unbekannt ist, kann auch die Wahrscheinlichkeit eines Fehlers 2. Art im Gegensatz zu der eines Fehlers 1. Art (blau) nicht vorab bestimmt werden.

Im Gegensatz zum Risiko 1. Art, die gegebene Null-Hypothese, obwohl sie in Wirklichkeit zutrifft, irrtümlicherweise abzulehnen, lässt sich das Risiko 2. Art, also die Wahrscheinlichkeit eines Fehlers 2. Art meist nicht vorab bestimmen. Grund dessen ist die Art und Weise der Festlegung von Hypothesen statistischer Tests: Während die Null-Hypothese stets eine dezidierte Aussage wie beispielsweise H_{0}: „Mittelwert“ \mu =0 darstellt, ist die Alternativhypothese, da sie im Grunde alle übrigen Möglichkeiten erfasst, damit i.d.R. auch nur recht unbestimmter bzw. globaler Natur (bspw. H_{1}: „Mittelwert {\displaystyle \mu \neq 0}“).

Die rechtsstehende Grafik illustriert diese Abhängigkeit der Wahrscheinlichkeit eines Fehlers 2. Art \beta ; (rot) vom unbekannten Mittelwert \mu _{1}, wenn als „Signifikanzniveau“, d.h. maximales Risiko 1. Art, \alpha ; (blau) in beiden Fällen derselbe Wert gewählt wird. Wie zu sehen, ergibt sich dabei überdies die paradoxe Situation, dass die Wahrscheinlichkeit eines Fehlers 2. Art umso größer wird, je näher der wahre Wert \mu _{1} an dem von der Nullhypothese behaupteten Wert \mu _{0} liegt, bis hin dazu, dass für {\displaystyle \mu _{1}\to \mu _{o}} das Risiko 2. Art \beta ; den Grenzwert (1-\alpha); annimmt. Anders gesagt: Je kleiner die Abweichung des tatsächlichen vom behaupteten Wert {\displaystyle \mu _{o}}, desto größer paradoxerweise die Wahrscheinlichkeit, einen Fehler zu machen, wenn man aufgrund des Testergebnisses weiterhin dem behaupteten Wert\mu _{0} Glauben schenkt (obwohl die Abweichung beider Werte voneinander möglicherweise aufgrund ihrer Geringfügigkeit praktisch gar keine Rolle mehr spielt). Wie dieser Widerspruch zeigt, kann ein rein formal-logischer Umgang mit der Problematik des Fehlers 2. Art leicht Grundlage von Fehlentscheidungen sein. Bei biometrischen und medizinstatistischen Anwendungen heißt die Wahrscheinlichkeit, eine Entscheidung für H0 zu treffen, falls H0 richtig ist, Spezifität. Die Wahrscheinlichkeit, eine Entscheidung für H1 zu treffen, falls H1 richtig ist, wird Sensitivität genannt. Wünschenswert ist, dass ein Testverfahren hohe Sensitivität und hohe Spezifität und damit kleine Wahrscheinlichkeiten für die Fehler erster und zweiter Art hat.

Beispiele

Alternativhypothese: „In der Urne befinden sich mehr rote als grüne Kugeln“.
Um ein Urteil über den Inhalt der Urne abgeben zu können, wird der Tester der Urne mehrmals Kugeln zu Testzwecken entnehmen. Die Nullhypothese in unserem Beispiel lautet, dass entweder genauso viele rote wie grüne, oder aber mehr grüne als rote Kugeln in der Urne sind (das Gegenteil der Alternativhypothese). Wenn der Tester aufgrund seiner Stichprobe also zu dem Schluss kommt, die Nullhypothese sei richtig bzw. die Alternativhypothese falsch, obwohl in Wahrheit doch die Alternativhypothese richtig ist, dann beginge er einen Fehler 2. Art.
Alternativhypothese: „Kinder, die eine besonders gesunde Kost erhalten, weisen bessere kognitive Leistung auf als Kinder, die auf die herkömmliche Weise ernährt werden.“
Wenn wir nun die kognitive Leistung unserer beiden Stichproben vergleichen, so stellen wir keinen Unterschied in der kognitiven Leistung fest. Demzufolge halten wir die Alternativhypothese für falsch und bestätigen die Nullhypothese. Wenn jedoch in Wahrheit die Population der gesund Ernährten doch eine bessere Leistung aufweist, dann begehen wir einen Fehler 2. Art.
Aber wir haben in unserer Stichprobe doch keinen Unterschied festgestellt? Diese Gleichheit kann aber auch auf die zufällige Streuung der Messergebnisse oder auf die ungünstige Zusammenstellung unserer Stichproben zurückzuführen sein.
Das Begehen eines Fehlers 2. Art ist in der Regel weniger „schlimm“, als ein Fehler 1. Art. Dies hängt jedoch individuell vom Untersuchungsgegenstand ab. In unserem Beispiel hat der Fehler 2. Art ausgesprochen nachteilige Konsequenzen: Obwohl die gesunde Ernährung die Leistung verbessert, entscheiden wir uns, die herkömmliche Ernährung beizubehalten. Ein Fehler 1. Art, also die Einführung der gesunden Ernährung für alle Kinder, obwohl diese keine Leistungsverbesserung bringt, hätte hier weniger nachteilige Konsequenzen gehabt.

Entgegengesetzte Notation

In manchen Quellen wird, was für Verwirrung sorgen kann, für den Fehler 2. Art und die Teststärke die genau entgegengesetzte Notation verwendet, also die Wahrscheinlichkeit, einen Fehler 2. Art zu begehen, mit dem Wert 1-β bezeichnet, die Teststärke oder Power dagegen mit β.

Siehe auch

Trenner
Basierend auf einem Artikel in: Wikipedia.de
Seitenende
Seite zurück
©  biancahoegel.de
Datum der letzten Änderung:  Jena, den: 30.04. 2020