Satz von Ceva


Der Satz von Ceva ist eine geometrische Aussage über Ecktransversalen im Dreieck, die der italienische Mathematiker Giovanni Ceva (1647 bis 1734) 1678 in seinem Werk De lineis rectis bewies. Der Satz wurde allerdings bereits im 11. Jahrhundert durch den Mathematiker und Emir von Zaragossa Yusuf al-Mutaman beschrieben.
In einem Dreieck
seien
,
und
drei Ecktransversalen
(also Verbindungsstrecken zwischen einer Ecke und einem Punkt auf der gegenüber
liegenden Seite beziehungsweise deren Verlängerung), die sich in einem Punkt
innerhalb oder außerhalb des Dreiecks schneiden. Dann gilt:
Hierbei ist
das (orientierte, also eventuell negative) Teilverhältnis
von
,
was für drei auf einer Gerade liegenden Punkte
mit
definiert wird durch
.
Wenn
zwischen
und
liegt, ist das genannte Teilverhältnis gleich
,
andernfalls gleich
.
Die oben angegebene Gleichung lässt sich mithilfe des Satzes von Menelaos beweisen.
Umgekehrt kann aus der Richtigkeit dieser Gleichung gefolgert werden, dass
sich die Geraden ,
und
in einem Punkt schneiden oder parallel sind. Diese Umkehrung des Satzes von Ceva
wird häufig in der Dreiecksgeometrie
für Beweise aus dem Themenbereich "Ausgezeichnete
Punkte im Dreieck" verwendet.
Wenn die Gleichung gilt, folgt daraus auch:
Da die Orientierung hierbei verloren geht, ist diese Gleichung nicht ausreichend für eine Umkehrung des Satzes.
Eine Verallgemeinerung des Satzes von Ceva ist der Satz von Routh.
Formuliert man den Satz von Ceva für die reelle projektive Ebene beziehungsweise für den projektiven Abschluss der hier verwendeten (affinen) reellen Anschauungsebene, so kann man den Satz und seine Umkehrung ohne den Sonderfall der parallelen Geraden formulieren.
Literatur
- Max Koecher, Aloys Krieg: Ebene Geometrie. 3. Aufl. Springer-Verlag, Berlin 2007, ISBN 978-3-540-49327-3.



© biancahoegel.de
Datum der letzten Änderung: Jena, den: 25.01. 2022