Algebra

Aryabhata I.
Eine Seite aus dem Buch al-Kitab al-Muchtasar fi hisab al-dschabr wa-l-muqabala

Die Algebra ist eines der grundlegenden Teilgebiete der Mathematik; es befasst sich mit den Eigenschaften von Rechenoperationen. Im Volksmund wird Algebra häufig als das Rechnen mit Unbekannten in Gleichungen bezeichnet (zum Beispiel x + 1 = 2); die Unbekannte wird (bzw. die Unbekannten werden) mit Buchstaben dargestellt. Als Begründer der Algebra gilt der Grieche Diophantos von Alexandria, der irgendwann zwischen 100 v. Chr. und 350 n. Chr. lebte. Sein 13 Bände umfassendes Werk Arithmetica ist das älteste bis heute erhaltene, in dem die algebraische Methode (also das Rechnen mit Buchstaben) verwendet wird.

Klassische und moderne Algebra

Die Algebra teilt man bezüglich ihrer Entstehung in die klassische und die moderne Algebra ein. Methoden der Algebra, die bis in das 19. Jahrhundert hinein entwickelt wurden, nennt man 'klassische Algebra'. In ihr untersucht man algebraische Gleichungen

a_n x^n + a_{n-1} x^{n-1} + \dotsb + a_1 x + a_0 = 0,

auf Eigenschaften ihrer Lösungen. Wichtige Aussagen im Bereich der klassischen Algebra sind der von Gauß bewiesene Fundamentalsatz der Algebra, der besagt, dass eine algebraische Gleichung der Ordnung n in \C genau n Lösungen hat, und der Satz von Abel, der besagt, dass es für eine algebraische Gleichung 5. Grades im Allgemeinen keine Lösungsformel ähnlich der PQ-Formel gibt.

Um 1830 entwickelte Évariste Galois (1811-1832) die Galoistheorie. Diese kann als der Beginn der modernen Algebra verstanden werden. Seit dieser Zeit entwickelte sich die Algebra weg von der Theorie der algebraischen Gleichungen hin zur Gruppen- und Ringtheorie.

Am Beispiel des großen fermatschen Satzes sieht man allerdings, dass sich die klassische und die moderne Algebra nicht klar trennen lassen. Die Vermutung, dass die algebraische Gleichung a^n + b^n = c^n mit a,b,c \in \mathbb{N} für n>2 keine ganzzahlige Lösung besitzt, wurde schon im 17. Jahrhundert von Pierre de Fermat formuliert. Die in der Vermutung enthaltene Fragestellung nach Lösungen der Gleichung ist eine typische Fragestellung der klassischen Algebra beziehungsweise der in dieser Zeit entstandenen Zahlentheorie. Jedoch konnte die Vermutung erst 1995 (von Andrew Wiles und Richard Taylor) mit moderneren Methoden der algebraischen Geometrie und der algebraischen Zahlentheorie bewiesen werden.

Algebra als Teilgebiet der Mathematik: Begriffsbestimmung und Gliederung

Die Inhalte und Methoden der Algebra haben sich im Laufe der Geschichte so stark erweitert, dass es schwierig geworden ist, den Begriff der Algebra in einer knappen Definition anzugeben. Im Folgenden werden einige Teilgebiete der Algebra und einige an die Algebra angrenzende, andere Teilgebiete erwähnt. Diese sind allerdings keineswegs scharf voneinander abgrenzbar.



Basierend auf einem Artikel in: externer Link Wikipedia.de
Seitenende
Seite zurück
©  biancahoegel.de
Datum der letzten Änderung: Jena, den: 02.03. 2017