Polyurethane

Allgemeine Struktur von Polyurethanen
Polyurethane-allg.svg
Wiederholeinheit bei linearen Polyurethanen, die aus einem Diol und Diisocyanat hergestellt wurden. Die Urethan-Gruppen sind blau gekennzeichnet. R1 steht für den „Rest“ des zur Synthese eingesetzten Diols (HO−R1−OH), R2 für den „Rest“ des Diisocyanats (OCN−R2−NCO).

Polyurethane (Kurzzeichen PUR; im Sprachgebrauch auch PU) sind Kunststoffe oder Kunstharze, die aus der Polyadditionsreaktion von Dialkoholen (Diolen) beziehungsweise Polyolen mit Polyisocyanaten entstehen. Charakteristisch für Polyurethane ist die Urethan-Gruppe ({\mathrm  {{-}NH{-}CO{-}O{-}\ }}).

Diole und Diisocyanate führen zu linearen Polyurethanen, vernetzte Polyurethane können durch Umsetzung von Triisocyanat-Diisocyanat-Gemischen mit Triol-Diol-Gemischen hergestellt werden. Die Eigenschaften von PU können in einem weiten Rahmen variiert werden. Je nach Vernetzungsgrad und/oder eingesetzter Isocyanat- oder OH-Komponente erhält man Duroplaste, Thermoplaste oder Elastomere. Mengenmäßig sind Polyurethanschaumstoffe, als Weich- oder Hartschaum am wichtigsten. Polyurethane werden jedoch auch als Formmassen zum Formpressen, als Gießharze (Isocyanat-Harze), als (textile) elastische Faserstoffe, Polyurethanlacke und als Polyurethanklebstoffe verwendet.

Geschichte

1937 synthetisierte eine Forschergruppe um Otto Bayer in den Laboratorien des I.G. Farben-Werks Leverkusen zum ersten Mal Polyurethane aus 1,4-Butandiol und Octan-1,8-diisocyanat und später aus Hexan-1,6-diisocyanat. Das entsprechende Polyurethan hatte die Bezeichnung Igamid U bzw. Perlon U. Weitere Versuche zeigten, dass Toluylendiisocyanat deutlich reaktiver war als Hexan-1,6-diisocyanat und dass Reaktionen mit Triolen zu dreidimensional vernetzten Polyurethanen führten. 1940 begann die industrielle Produktion in Leverkusen. Aufgrund des Zweiten Weltkriegs und der damit verbundenen Knappheit an Rohstoffen entwickelte sich der Markt für Polyurethane jedoch zunächst nur sehr langsam. Daher wurden Polyurethane bis Ende des Zweiten Weltkriegs nur für militärische Zwecke im Flugzeugbau verwendet. So waren 1952 weniger als 100 t pro Jahr des wichtigen Polyisocyanats Toluylendiisocyanat (TDI) verfügbar. Von 1952 bis 1954 wurden Polyester-Schaumstoffe entwickelt, wodurch das kommerzielle Interesse an Polyurethanen weiter gesteigert wurde. Mit dem Einsatz von Polyetherpolyolen wuchs die Bedeutung der Polyurethane rasch an. Die größeren Variationsmöglichkeiten bei der Herstellung von Polyetherpolyolen führten zu einer erheblichen Ausdehnung der Anwendungen. So wurden 1960 bereits über 45.000 t an Schaumstoffen produziert.

Bis zum Jahr 2002 ist der weltweite Verbrauch auf rund 9 Millionen Tonnen Polyurethan angestiegen, bis 2007 stieg er weiter auf über 12 Millionen Tonnen. Die jährliche Zuwachsrate beträgt ca. 5 %. 2011 betrug die Produktion allein in Deutschland mit den Hauptproduzenten Covestro und BASF knapp 1 Million Tonnen, davon etwa 32 % für Gebäudedämmung, 20 % für Möbel und Matratzen, 14 % für den Automobilbau und 10 % für Lacke und Farben.

Eigenschaften

Polyurethane können je nach Wahl des Polyisocyanats und des Polyols unterschiedliche Eigenschaften aufweisen. Die Dichte von ungeschäumtem Polyurethan variiert zwischen rund 1000 und 1250 kg/m³. Typische Dichten sind rund 5 bis 40 kg/m³ für weichen Blockschaum oder 30 bis 90 kg/m³ für harten Blockschaum.

Toxizität

Isocyanate können Allergien auslösen und stehen im Verdacht, Krebs zu verursachen. Wenn Polyurethane ausreagiert sind und keine Monomere mehr enthalten, besitzen sie in der Regel keine gesundheitsschädlichen Eigenschaften mehr. Des Weiteren können dem Polyurethan flüchtige Additive zugesetzt sein, wie Flammschutzmittel oder Weichmacher, die je nach Nutzung dermal (Haut) oder inhalativ (Atmung) aufgenommen werden können. Richtlinien und Merkblätter für den sicheren Umgang mit Polyurethan-Rohstoffen können bei den Herstellern oder der ISOPA (Europäischer Verband der Diisocyanat- und Polyolhersteller) abgerufen werden.

Herstellung

Diisocyanat-Monomere (Auswahl)
Hexamethylene-diisocyanate-2D-skeletal.png
Hexamethylen-1,6-diisocyanat (HDI)
Structural formula of toluene-2,4-diisocyanate.svg
Toluol-2,4-diisocyanat (TDI)
4,4'-methylene diphenyl diisocyanate.svg
Diphenylmethan- 4,4'-diisocyanat (MDI)
Isophorone diisocyanate V.1.svg
Isophorondiisocyanat (IPDI)
gängige Diol-Komponenten
Polyether Polyol Structural Formula V3.svg
Polyether-Polyol: Sauerstoffatome des Ethers sind blau markiert.
Polyesterpolyol.svg
Polyester-Polyol aus Adipinsäure und 1,4-Butandiol. Sauerstoffatome und Kohlenstoffatom der Carbonsäureester-Gruppen sind blau markiert.

Polyurethane entstehen durch die Polyadditionsreaktion von Polyisocyanaten mit mehrwertigen Alkoholen, den Polyolen. Die Verknüpfung erfolgt durch die Reaktion einer Isocyanatgruppe (–N=C=O) eines Moleküls mit einer Hydroxygruppe (–OH) eines anderen Moleküls unter Bildung einer Urethangruppe (–NH–CO–O–). Im Gegensatz zur Polykondensation erfolgt keine Abspaltung von Nebenprodukten.

Addition zu Polyurethan.svg

Es kommen nur wenige verschiedene Isocyanatkomponenten zum Einsatz:

Aufgrund der hohen Flüchtigkeit und der deshalb gefährlichen Verarbeitung kommen von obigen Monomeren in den meisten Fällen bei Verarbeitern nur Präpolymere zum Einsatz, welche allerdings immer einen Restmonomeranteil enthalten. Insbesondere bei HDI ist dies der Fall. Übliche Restmonomeranteile in HDI-Trimerprodukten (z.B. Desmodur N, Tolonate HDT, Basonat oder Duranate) liegen hier bei < 0,5 % HDI und sind damit nach Herstellereinstufung als nicht giftig eingestuft und somit im beruflichen Bereich unter Beachtung der Schutzhinweise der Hersteller verwendbar.

Im Wesentlichen werden die späteren Eigenschaften durch die Polyolkomponente bestimmt, weil zum Erreichen gewünschter Eigenschaften üblicherweise nicht die Isocyanatkomponente angepasst (chemisch verändert) wird, sondern die Polyolkomponente. Abhängig von Kettenlänge und Anzahl der Verzweigungen im Polyol können mechanische Eigenschaften beeinflusst werden. So führt ein Einsatz von Polyesterpolyolen zusätzlich zu den üblicheren Polyetherpolyolen zu besserer Standfestigkeit, weil Polyesterpolyole einen höheren Schmelzpunkt haben und somit beim Applizieren des Polyurethans erstarren.

Die Polyurethanbildung erfordert mindestens zwei verschiedene Monomere, im einfachsten Fall ein Diol und ein Diisocyanat. Die Polyreaktion verläuft in Stufen. Zunächst entsteht aus Diol und Diisocyanat ein bifunktionelles Molekül mit einer Isocyanatgruppe (–N=C=O) und einer Hydroxygruppe (–OH). Dieses kann an beiden Enden mit weiteren Monomeren reagieren. Dabei entstehen kurze Molekülketten, sogenannte Oligomere. Diese können mit weiteren Monomeren, anderen Oligomeren oder bereits gebildeten Polymeren reagieren.

Polyaddition von 1,6-Hexandiisocyanats mit 1,4-Butandiol (n ≈ 40)
Polyaddition von 1,6-Hexandiisocyanats mit 1,4-Butandiol (n ≈ 40)

Vernetzungen

Durch einen Überschuss von Diisocyanat können lineare Polyurethane vernetzt werden. Durch Addition einer Isocyanat-Gruppe an eine Urethan-Gruppe bildet sich eine Allophanat-Gruppe.

Allophanate.svg

Durch eine Trimerisierung von drei Isocyanat-Gruppen ist auch die Bildung einer Isocyanurat-Gruppe möglich. Werden mehrfunktionelle Isocyanate eingesetzt, bilden sich die hochverzweigten Polyisocyanurate (PIR).

Isocyanurate.svg

Alternativ können vernetzte bzw. verzweigte Polyurethane auch durch den Zusatz von Stoffen mit mehr als zwei Isocyanat-Gruppen, wie beispielsweise PMDI, und Triolen, wie beispielsweise Glycerin, hergestellt werden. Auch die Verwendung von mehrfachen Aminen, wie Ethylendiamin, führt zu Vernetzungen. Die Reaktion von Isocyanaten mit Aminen führt erst zu Harnstoff-Gruppen.

Polyharnstoff Synthese.svg

Diese sind weiterhin reaktiv und erlauben die Addition einer weiteren Isocyanat-Gruppe, wobei sich eine Biuret-Gruppe bildet.

Biurete.svg

Soll in der Praxis ein bestimmtes Polyurethan hergestellt werden, so bieten sich zwei Wege an: Die direkte Reaktion eines Polyols mit einem Polyisocyanat (Einstufen-Verfahren) und das Zweistufen-Verfahren. Beim Zweistufen-Verfahren werden im ersten Schritt zwei Prepolymere hergestellt: Mit Diisocyanaten im Überschuss werden bei der Umsetzung mit Diolen ein NCO-Prepolymer und bei einer Umsetzung mit einem Überschuss an Diolen ein OH-Prepolymer gewonnen. Erst im zweiten Schritt erfolgt durch Mischung der Prepolymere die eigentliche Polymerisation. Das Zweistufen-Verfahren führt zu einer sehr weitmaschigen Vernetzung des Polymers und ist für PUR-Weichschaumstoffe wichtig.

Schaumbildung

Wird der Reaktionsmischung eine kleinere Menge Wasser zugefügt, so reagiert Wasser mit Isocyanatgruppen zur entsprechenden instabilen Carbamidsäure, die unter Abspaltung von Kohlenstoffdioxid (CO2) zum Amin zerfällt. Dieses Amin reagiert mit einer weiteren Isocyanatgruppe zum entsprechenden substituierten Harnstoff. Die Freisetzung von CO2 führt daher zu keinem Abbruch der Polymerisation. Das entstehende Kohlenstoffdioxid schäumt die Reaktionsmasse auf.

Polyharnstoff.svg
Reaktion von Isocyanat mit Wasser unter Entstehung von CO2 und der Bildung einer Polyharnstoff-Gruppe

Durch die Menge des zugegebenen Wassers kann das Raumgewicht des entstehenden Schaumes variiert werden.

Biogene Polyole

Im Regelfall entstammen sowohl die Polyole wie auch die Polyisocyanate der Produktion aus petrochemischen Rohstoffen, es können jedoch auch Polyole auf der Basis von Pflanzenölen oder Lignin eingesetzt werden, siehe Polyole. Als Triol kann Rizinusöl in Beschichtungen eingesetzt werden.

Anwendung

Schaumstoffe

Haushaltsschwämme aus weichem PUR-Schaum
PU-Wärmedämmung in einem Kunststoffmantelverbundrohr
Spraydosen für die Herstellung von PU-Hartschaum
Polyurethanschaum

Aus Polyurethan lassen sich sehr einfach Schaumstoffe herstellen. Das Besondere an PUR-Schaumstoffen ist, dass verarbeitende Betriebe Halbzeug (Schaumstoff in zugeschnittener Form) nehmen oder Schaumstoffe aus flüssigen Komponenten an Ort und Stelle herstellen (Ortschaum, „Formed in-place foam“) können. Die Komponenten können auch in oder auf Industrieteile gebracht werden; dort entsteht dann der Schaum.

Weiche PUR-Schaumstoffe werden für sehr viele Zwecke verwendet, vor allem als Polstermaterial (z.B. für Möbel bzw. Autositze) als Matratzenschaum, als Teppichrückenmaterial, zur Textilkaschierung, als Reinigungsschwamm oder als Filtermaterial. PUR-Weichschäume sind zumeist offenzellig und sind in einem breiten Härte- und Dichtebereich verfügbar.

PUR-Hartschäume werden vor allem zur Wärmedämmung z.B. in Gebäuden, Kühlgeräten, Wärme- und Kältespeichern sowie einigen Rohrsystemen (Kunststoffmantelverbundrohr, flexible Verbundrohre) eingesetzt.

Weitere, relativ neue Anwendungsgebiete für PUR-Schäume gibt es im Fahrzeugbau (Lenkrad, Armauflage, Softbeschichtung von Handgriffen, Innenraumverkleidung, Armaturenbrett, Schalldämmung, Klapperschutz, Abdichtungen, Transparentbeschichtung von Holzdekoren).

Polyurethan-Schäume, die als Wärmedämmung konzipiert sind, sind geschlossenzellig aufgebaut, damit die Zellgase mit ihren niedrigen Wärmeleitfähigkeiten in den Schaumzellen verbleiben. Früher kam häufig R 11 (Trichlorfluormethan) als Zellgas zum Einsatz. Wegen der ozonschädigenden Eigenschaft dieses halogenierten Kohlenwasserstoffs wurde dieser weitgehend zunächst durch Kohlendioxid und aktuell durch Cyclopentan ersetzt, wobei dann in den Schaumzellen ein Gemisch aus Cyclopentan (ca. 10 bis 35 %) und Kohlendioxid enthalten ist. Wenn der Polyurethan-Schaum nicht diffusionsdicht gegenüber der Umgebung eingekapselt ist, werden die ursprünglich vorhandenen Zellgase unter irdischen Bedingungen durch Diffusionsvorgänge nach und nach durch Luft und Wasserdampf ersetzt, wodurch die Wärmeleitfähigkeit des Polyurethan-Schaums zunimmt. Nach der Herstellung erreichen Polyurethan-Schäume mit Kohlendioxid als Zellgas Wärmeleitfähigkeiten von ca. 0,029 bis 0,033 W·m−1·K−1, Polyurethan-Schäume mit Cyclopentan als Zellgas Wärmeleitfähigkeiten von ca. 0,022 bis 0,027 W·m−1·K−1. Die Polyurethan-Schäume können sowohl hart als auch flexibel mit unterschiedlichen Dichten eingestellt werden.

PU-Hartschaumplatten sind in verschiedenen Dichten verfügbar. Die Produkte sind teils mit Füllstoffen versehen (Glasmikroballons, Aluminiumpulver). Einsatzzweck sind Dämmstoffe sowie der Modell- und Vorrichtungsbau. Der Schaum wird dazu meist spanend bearbeitet.

Früher wurden Polyurethan-Schaumstoffe mit Pentabromdiphenylether flammgeschützt. Wegen der Toxizität dieses Stoffs kommen heute andere Flammschutzmittel wie beispielsweise TCPP oder Blähgraphit zum Einsatz.

Lacke, Beschichtungen und Klebstoffe

Eine der wichtigsten Anwendungen von Polyurethanen ist der Einsatz in Lacken und Beschichtungen. Hier werden Polyurethane wegen ihrer guten Haftungseigenschaften als Grundierungen und wegen ihrer hohen Beständigkeit gegen Lösemittel, Chemikalien und Witterungseinflüsse als Deck- und Klarlacke in vielen Anwendungsbereichen verwendet. Hierzu gehören z.B. auch Bandbeschichtungs-Lacke und Beschichtungen für Fußböden. Des Weiteren zu nennen sind Textilbeschichtungen und -Ausrüstungen sowie Lederzurichtungen. Flächige Anwendungen zur Verklebung von unterschiedlichen, vorzugsweise flexiblen Materialien (im Bereich Schuhe, Holz/Möbel, Automobilinnenraum) sind ebenfalls ein wichtiges Anwendungsgebiet von Polyurethansystemen. In der Medizin werden Polyurethane als Liner in der Prothetik der unteren Extremitäten verwendet.

Zur Anwendung kommen flüssige Systeme, wie feuchtigkeitshärtende Prepolymere, 2-Komponenten-Systeme, High Solids, Polyurethan-Lösungen und Polyurethandispersionen, aber auch Feststoffe, z.B. Granulate (TPUs) oder Pulver, die aufgeschmolzen oder gelöst werden.

Vergussmassen

Spezielle Verwendungen

Dämmschicht aus Polyurethan-Hartschaum beim Hausbau

Aus Polyurethan werden Wundauflagen, Matratzen, Schuhsohlen, Dichtungen, Schläuche, Fußböden, Dämmstoffe, Lacke, Klebstoffe, Dichtstoffe, Skier, Autositze, Laufbahnen in Stadien, Armaturenbretter, Vergussmassen, latexfreie Kondome (Präservative), Gussboden und vieles mehr hergestellt.

Handelsnamen

Normen

Trenner
Basierend auf einem Artikel in: Wikipedia.de
Seitenende
Seite zurück
©  biancahoegel.de
Datum der letzten Änderung: Jena, den: 22.02. 2024