Primordiale Nukleosynthese

Als primordiale Nukleosynthese bezeichnet man in der Kosmologie den Vorgang der Bildung der ersten zusammengesetzten Atomkerne kurz nach dem Urknall. Der Theorie zufolge entstehen zunächst Deuterium, Helium sowie Spuren von Lithium. Die heute zu beobachtenden schwereren Elemente stammen aus Fusions- und anderen Kernreaktionen in Sternen und damit aus viel späterer Zeit.

Die innerhalb der ersten drei Minuten nach dem Urknall entstehenden Elemente verteilen sich zu ca. 75 % auf Wasserstoff 1H und ca. 25 % Helium 4He, die geringen Anteile von D=2H, 3He, 3H und freien Neutronen (jeweils 10−4 bis 10−7), sowie deutlich seltenere Beryllium- und Lithiumisotope fallen dabei nicht ins Gewicht. Später fielen Temperatur und Dichte des Universums unter die kritischen Werte, die für die Kernfusion nötig sind. Die kurze Zeitdauer erklärt zum einen, warum sich schwerere Elemente nicht schon beim Urknall gebildet haben, und zum anderen, warum reaktive leichte Elemente wie Deuterium übrig bleiben konnten. Die primordiale Nukleosynthese fand lokal, aber gleichzeitig überall im gesamten Universum statt.

Entstehung der Theorie

Die Idee zur primordialen Nukleosynthese geht auf Arbeiten des amerikanischen Physikers George Gamow im Jahre 1946 zurück. 1950 beschrieb der Japaner Chushiro Hayashi die Neutron-Proton-Gleichgewichtsprozesse zur Erzeugung der leichten Elemente, und 1966 erstellte Ralph Alpher ein Modell der 4He-Synthese.

In der Folge kam es zu weiteren Verfeinerungen des Modells aufgrund immer besserer Kenntnis der Kernreaktionsraten der beteiligten Nukleonen.

Zeitlicher Ablauf

Nach der heute akzeptierten Theorie konnten die Prozesse zur Bildung der ersten Atomkerne etwa eine Hundertstelsekunde nach dem Urknall beginnen. Das Universum hatte sich zu diesem Zeitpunkt so weit abgekühlt, dass die bisher als Plasma vorliegenden Quarks zu Protonen und Neutronen im Verhältnis 1:1 kondensierten. Die Temperatur betrug zu diesem Zeitpunkt noch ca. 10 Mrd. Kelvin, das entspricht einer mittleren kinetischen Energie von etwa 1,3 MeV. Im weiteren Verlauf der Nukleosynthese verschob die abnehmende Temperatur das Neutron-Proton-Gleichgewicht immer mehr zugunsten der Protonen.

Etwa 1 Sekunde nach dem Urknall entkoppelten die Neutrinos von der Materie. Elektronen und Positronen zerstrahlten. Das Verhältnis von Neutronen zu Protonen war auf etwa 1:6 abgesunken. Die Temperatur betrug zu diesem Zeitpunkt ca. 600 Mio. Kelvin, die mittlere kinetische Energie knapp 80 keV, sodass sich erstmals Protonen und Neutronen zu Deuteronen (= Deuteriumkernen) verbinden konnten. Allerdings wurde dieses durch hochenergetische Photonen sofort wieder aufgespalten. Ein wichtiger Parameter der Theorie ist daher das Verhältnis von baryonischer Materie zu Photonen, von dem der Beginn der effektiven Deuteronen-Synthese abhängt. Das Standardmodell der Kosmologie nimmt dieses in der Größenordnung von 10−10 an.

Erst eine Minute nach dem Urknall hatte sich das Universum daher so weit abgekühlt (60 Mio. Kelvin oder knapp 8 keV), dass effektiv Deuteronen gebildet werden konnte. Da in diesem Zeitraum weitere Neutronen zerfielen (das freie Neutron hat eine Halbwertszeit von 10 Minuten), betrug das Verhältnis von Neutronen zu Protonen jetzt nur noch 1:7.

Die verbleibenden Neutronen wurden zu 99,99 Prozent in 4He gebunden. Aufgrund der hohen Bindungsenergie des 4He-Kerns und weil kein stabiler Kern mit Massenzahl 5 bzw. 8 existiert, wird 4He kaum abgebaut. Nur das Element Lithium in Form des Isotops 7Li wurde noch in geringem Ausmaß bei Kernreaktionen gebildet.

5 Minuten nach dem Urknall war die Teilchendichte des Universums so weit gesunken, dass die primordiale Nukleosynthese im Wesentlichen beendet war. Das Resultat der Nukleosynthese waren neben 4He Spuren von Deuteronen, Tritonen (= Tritiumkernen) und Helionen (3He-Kerne) als Zwischenprodukte der Helium-4-Synthese sowie die Protonen, die keine Neutronen als Reaktionspartner gefunden hatten. Die noch übriggebliebenen freien Neutronen zerfielen im Verlauf der nächsten Minuten, die Tritonen im Verlauf weiterer Jahrzehnte.

Die Theorie sagt ein Massenverhältnis von 75 Prozent Wasserstoff (Protonen) zu 25 Prozent Helium voraus. Dieser Wert stimmt äußerst gut mit den Beobachtungen der ältesten Sterne überein, was ein Grund für die breite Akzeptanz dieser Theorie ist. Gerade für 4He wurden Messungen auch außerhalb unserer Milchstraße gemacht, die das Ergebnis bestätigen. Auch die relativen Häufigkeiten von Deuterium, 3He und Lithium werden von der Theorie sehr gut erklärt.

Verbindung zu anderen kosmologischen Modellen

Die primordiale Nukleosynthese ist heute eines der wichtigsten Standbeine des Standardmodells der Kosmologie. In ihrem Rahmen wurde erstmals auch die kosmische Hintergrundstrahlung vorhergesagt.

Die primordiale Nukleosynthese wird ferner als wichtiges Indiz für die Existenz nicht-baryonischer dunkler Materie gewertet: zum einen limitiert sie die Menge der Baryonen im Universum durch ihr Verhältnis zu den Photonen; zum anderen macht es die gleichmäßige Verteilung der Baryonen während der primordialen Nukleosynthese wahrscheinlich, dass die heute beobachtete körnige Struktur des Universums nicht durch die Baryonen, sondern durch die Dichteschwankungen eines nur schwach wechselwirkenden - und damit nicht baryonischen - schweren Elementarteilchens ausgeprägt werden konnte.

Trenner
Basierend auf einem Artikel in: Extern Wikipedia.de
Seitenende
Seite zurück
©  biancahoegel.de
Datum der letzten Änderung:  Jena, den: 05.11. 2021