Hubkolbenmotor

Abb. 1: Schemazeichnung einer Hubkolbenmaschine

In einem Hubkolbenmotor führt die Expansion eines Gases über eine Schubkurbel dazu, dass mechanische Energie abgegeben bzw. Arbeit verrichtet wird. Hubkolbenmotoren zählen zu den Kolbenmaschinen.

Funktionsprinzip

Die Ausdehnung des Gases in einem Zylinder verrichtet Arbeit an einem Kolben, die durch eine Pleuelstange auf die Kurbelwelle übertragen wird. So wird die oszillierende Bewegung des Kolbens in eine Drehbewegung umgesetzt, und die Kolben können Arbeit über die Pleuel an die Kurbelwelle abgeben (Abb. 1). Zwei Bauformen sind bekannt:

Betrachtet man nur die Bewegung der Teile relativ zueinander, unterscheiden sich die beiden Bauformen nicht. Die Zylinder eines Sternmotors sind drehsymmetrisch um die Kurbelwelle angeordnet, wodurch Unwucht vermieden wird. Ihre Anzahl ist bei Viertaktmotoren meist ungerade, damit die Zündungen in gleichmäßigen Abständen erfolgen.

Beispiele für Hubkolbenmotoren sind:

Hubkolbenmotoren werden auch nach der Zahl und Anordnung der Kolben je Brennraum eingeteilt:

Sie werden auch nach der Zahl und Anordnung der Zylinder eingeteilt:

Begriffe und Bezeichnungen

Massenkräfte

Infolge der Hubbewegung der Kolben und Pleuel sowie infolge des ungleichförmigen Übertragungsverhaltens des Kurbeltriebs treten Massenkräfte auf, die sich in den Motorlagern abstützen und benachbarte Strukturen zu Schwingungen anregen.

Die Massenkräfte der linear bewegten Teile des Kurbeltriebes (oszillierende Massen) lassen sich durch folgende Formel näherungsweise berechnen:

{\displaystyle F_{\mathrm {osz} }=m_{\mathrm {osz} }\cdot r\cdot \omega ^{2}\cdot (\cos(\alpha )+\lambda \cdot \cos(2\,\alpha ))}

mit

\lambda ={\tfrac  {r}{l}}
{\displaystyle F_{\mathrm {osz} }}: Oszillierende Massenkraft
{\displaystyle m_{\mathrm {osz} }}: Oszillierende Masse
r: Kurbelradius
\omega : Winkelgeschwindigkeit der Kurbelwelle
\alpha : Kurbelwinkel
l: Pleuellänge
t: Zeit seit Durchlaufen des oberen Totpunktes

Da es sich bei dem Ausdruck in der Klammer um die ersten zwei Glieder einer Reihenentwicklung handelt, bezeichnet man {\displaystyle \cos(\alpha )} als Massenkraft 1. Ordnung, {\displaystyle \lambda \cdot \cos(2\,\alpha )} als Massenkraft 2. Ordnung.

Theoretisch treten nicht nur 1. und 2. Ordnung auf, sondern unendlich viele ganzzahlige Ordnungen, die jedoch ab der 4. Ordnung aufgrund ihrer geringen Größe meistens vernachlässigbar sind.

Massenausgleich

Abb. 2: Lanchester-Ausgleich

Die rotierenden Massen des Kurbeltriebs können durch Gegengewichte an der Kurbelwelle ausgeglichen werden. Oszillierende Massenkräfte 1. und 2. Ordnung können bei Mehrzylindermotoren durch eine geschickte Anordnung der Zylinder vermieden oder vermindert werden. Um diese Massenkräfte völlig auszugleichen, benötigt man mindestens sechs Zylinder beim Viertakt-Reihenmotor oder acht Zylinder beim V-Motor. Bei Motoren mit weniger Zylindern kommen oft Ausgleichswellen zum Einsatz, auf denen entsprechende Ausgleichsunwuchten mit einfacher oder doppelter Kurbelwellen-Drehzahl umlaufen (zum Beispiel Lanchester-Ausgleich (Abb. 2)).

Eine andere Möglichkeit, einen perfekten Massenausgleich zu erreichen (und zwar nicht nur näherungsweise), besteht in der Verwendung von zwei gegenläufig rotierenden Kurbelwellen, wie zum Beispiel beim H-Motor.

Tabelle

Zylinderzahl Freie Kräfte
(1. Ordnung)
Freie Kräfte
(2. Ordnung)
Freie Momente
(1. Ordnung)
Freie Momente
(2. Ordnung)
Zündabstände bei Viertaktmotoren
1 2 3 - - 720°
2 Reihe (180°) 0 2 2 0 180°/540°
2 Twin (360°) 2 3 0 0 360°
2 (V 90°) 1 3 - - 270°/450°
2 (V 60°) 2 3 - - 300°/420°
2 (Boxer) 0 0 2 3 360°
3 (Reihe 120°) 0 0 2 3 240°
4 (Reihe) 0 3 0 0 180°/180° oder 270°/90°
4 (V 90°)1 0 3 2 0 90°/270°
4 (Boxer 180°) 0 0 0 2 180°/180°
5 (Reihe) 0 0 2 2 144°/144°
6 (Reihe) 0 0 0 0 120°/120°
6 (V 90°)1 0 0 3 3 150°/90° oder 120°/120° (um 30° versetzte Hubzapfen)
6 (V 60°)1 0 0 3 3 120°/120° (um 60° versetzte Hubzapfen)
6 (Boxer 120°) 0 0 1 2 120°/120°
8 (V 90°) 0 0 1 0 90°/90°/
12 (V 60°) 0 0 0 0 60°/60°

Legende: 0 = voll ausgeglichen 1 = voll auszuwuchten 2 = teilweise auszuwuchten 3 = nicht auszuwuchten

1 Vier- und Sechszylinder-V-Motoren (außer Rennmotoren) werden in der Regel mit versetzten Kurbelzapfen ausgeführt, damit sich gleiche Zündabstände ergeben.

Ungleichförmige Bewegungsabläufe

Drehungleichförmigkeit

Da Hubkolbenmotoren nicht wie etwa Turbinen kontinuierlich laufen, sondern einen in verschiedene Takte aufgeteilten Prozess durchlaufen, kommt es an der Kurbelwelle zu einer Drehzahl- und Momentenpulsation, die um einen stationären Mittelwert schwankt (Abb. 3).

Abb. 3: Momentenpulsation und Drehungleichförmigkeit

Die Form der Drehunförmigkeit wird bestimmt durch die Anzahl der Zylinder, den Druckverlauf im Zylinder, die Geometrie und die Massen der Motorbauteile sowie das Arbeitsverfahren (z. B. Zweitakt- bzw. Viertaktverfahren) sowie den Betriebspunkt (Last/Drehzahl) des Motors. Der Nebenantrieb z. B. einer Nockenwelle und der Sekundärantrieb von Nebenaggregaten können ebenfalls einen Einfluss haben.

Diese sogenannte Drehungleichförmigkeit ist die Ursache für Torsions-Schwingungen im nachgeschalteten Antriebsstrang, die häufig auch zu unangenehmen Motorgeräuschen führen. Um diese zu reduzieren, kommen Zweimassenschwungräder oder Torsionsschwingungs-Tilger beziehungsweise -Dämpfer zum Einsatz. Auch ein Wandlergetriebe dämpft die Stöße.

Kolbenhub und Verdichtung

Durch die Knickpleueltechnik und andere Methoden, einen variablen Kurbeltrieb zu erreichen, sollen unter anderem Verdichtungsverhältnis und -verlauf gesteuert werden.

Literatur

Trenner
Basierend auf einem Artikel in: Wikipedia.de
Seitenende
Seite zurück
© biancahoegel.de
Datum der letzten Änderung: Jena, den: 12.11. 2021