Kernbrennstoff
Kernbrennstoff ist das Material, in dem die Spaltreaktion eines Kernreaktors stattfindet. Es gibt verschiedene Kernbrennstoffe für die verschiedenen Reaktortypen. Jeder Kernbrennstoff enthält mindestens ein spaltbares Nuklid, meist 235U; auch das einzelne spaltbare Nuklid wird manchmal als Kernbrennstoff bezeichnet. Uran wird in den meisten Reaktoren nicht als Natururan, sondern in angereicherter Form verwendet. Im Betrieb entstehen durch Neutroneneinfang im Kernbrennstoff weitere spaltbare Nuklide, beispielsweise Plutoniumisotope. Transuranabfall könnte zukünftig als Kernbrennstoff verwendet werden, allerdings nur in besonderen Typen von Reaktoren (siehe Transmutation), die heute (2016) noch Forschungsgegenstand sind.
Kernbrennstoffe können nach ihrer chemischen Beschaffenheit oder ihrer technischen Anwendungsform unterschieden werden. Die Veränderung der Zusammensetzung und weiterer Eigenschaften über die Gebrauchsdauer wird als Abbrand bezeichnet.
Von den Kernbrennstoffen zu unterscheiden sind Brutstoffe, aus denen im Reaktorbetrieb neuer Brennstoff erbrütet wird. Die Brutstoffe werden manchmal auch als schwache Kernbrennstoffe bezeichnet.
Chemische Unterteilung
Oxidische Kernbrennstoffe
Mit Stand 2016 sind die große Mehrheit der verwendeten Kernbrennstoffe oxidisch, also UO2 bzw. PuO2. Sie werden primär in Leichtwasserreaktoren, aber auch in anderen Systemen eingesetzt. Vorteile sind die thermische und chemische Stabilität bis in relativ hohe Temperaturbereiche. Zu den Nachteilen gehören die geringe thermische Leitfähigkeit.
Metallischer Kernbrennstoff
Metallisches Uran wurde in den inzwischen ausgedienten Magnox-Reaktoren und den frühen schnellen Brütern EBR-1, EBR-2 und dem ersten Reaktor überhaupt eingesetzt. Die einfache Herstellung, die große Wärmeleitfähigkeit sowie die hohe Dichte waren dafür ausschlaggebend. Aufgrund der Reaktionsfreudigkeit mit Wasser, spontanen Dichteänderungen bei gewissen Temperaturen sowie dem Anschwellen während des Betriebs findet metallischer Kernbrennstoff keine Verwendung mehr. Ausnahmen wie Forschungs- und Schulungsreaktoren sind aber weiterhin zu finden (z. B. CROCUS an der EPFL Lausanne).
Andere feste Kernbrennstoffe
Im Zuge der Weiterentwicklung von Reaktorsystemen (vierte Generation) gibt es Konzepte zu carbidischen und nitridischen Kernbrennstoffen. Dabei stehen die Vorteile keramischer Stoffe im Vordergrund. Zum Teil wurden diese bereits in den 1950er- und 1960er-Jahren erprobt, aber zugunsten der Oxide nicht weiter verfolgt. Die Vorteile liegen bei der höheren Dichte, vergleichbar hoher Schmelztemperatur und grob zehnfach höherer Wärmeleitfähigkeit im Vergleich zum Oxid.
Flüssige Kernbrennstoffe
Eine weitere Entwicklung sind die Salzschmelzen, in denen der Brennstoff aufgelöst wird. Ein Beispiel ist FLiNaK. Durch die flüssige Phase ergeben sich ganz andere technologische Möglichkeiten und Herausforderungen an das Reaktordesign. Vorteile sind u. a. eine mögliche kontinuierliche Reinigung von Spaltprodukten, dem hohen möglichen Temperaturbereich und dem Wegfall der Brennelementherstellung. Ein großer Nachteil ist die Korrosivität der Salze. Zusammen mit wässrigen Uranlösungen wurden auch diese Konzepte bereits früher untersucht, dann aber nicht weiter verfolgt. Auch sie erleben im Rahmen der vierten Generation neue Aufmerksamkeit.
Technologische Unterteilung fester Kernbrennstoffe
Brennstäbe
Brennstäbe sind mit Abstand die am weitesten verbreitete Form von Kernbrennstoff. Typischerweise umschließt ein mehrere Meter langes, gasdichtes Hüllrohr einen Stapel von keramischen Brennstoff-Presslingen (Pellets). Keramischer Brennstoff kann aber auch in Form einer Granulat-Schüttung verwendet werden. Das Hüllrohr besteht bei Leichtwasser- und Schwerwasserreaktoren aus Zirkalloy, bei Brutreaktoren aus Edelstahl.
Die Brennstäbe werden nicht einzeln verwendet, sondern bei allen Reaktortypen zu Bündeln (Brennelementen) zusammengefasst.
Brennelemente für Hochtemperaturreaktoren
Hochtemperaturreaktoren verwenden Kernbrennstoff, der – etwa in Form kleiner UO2-Körner – in Graphit eingebettet ist. Diese Brennelemente sind bei manchen Konstruktionen tennisballgroße Kugeln, bei anderen senkrechte Säulen von prismatischem Querschnitt.
Brennelemente für Forschungsreaktoren
In manchen Forschungs- und Ausbildungsreaktoren wurden und werden besondere Kernbrennstoffe benutzt: im Siemens-Unterrichtsreaktor Platten aus Polyethylen, die Uranoxid (U3O8)-Pulver enthielten; im TRIGA-Reaktor eine Verbindung von Uran, Zirkonium und Wasserstoff; im Münchner Forschungsreaktor FRM II speziell geformte Platten aus Uransilicid-Aluminium-Dispersionsbrennstoff.
Varia
Der Umgang mit Kernbrennstoffen ist gesetzlich z. B. durch das deutsche Atomgesetz geregelt.
Brennstoff wird als 'abgebrannt' bezeichnet, wenn er nicht mehr maßgeblich zur Wärmeproduktion im Reaktor beitragen kann. Das betrifft insbesondere alle Brennstoffe oder Brennelemente, die aus diesem Grund im Reaktor ersetzt wurden.
Spaltstoff
Als Spaltstoffe bezeichnet man in der Kerntechnik Nuklide, die sich nach Absorption eines Neutrons unter Energieabgabe spalten und dabei gleichzeitig mehrere Neutronen abgeben, die wiederum neue Kernspaltungen auslösen können (Kettenreaktion). Im zivilen Bereich wird die Kernspaltung zur Energiegewinnung, im militärischen Bereich in Kernwaffen eingesetzt. Die wichtigsten Spaltstoffe sind Uran 233 und 235 und Plutonium 239 und 241.
Die kleinste Spaltstoffmasse, die eine sich selbst erhaltende Kettenreaktion in Gang setzt, ist die kritische Masse. Sie beträgt bei Uran-235 etwa 50 kg, bei Plutonium-239 ca. 10 kg. Durch technische Maßnahmen kann die kritische Masse verringert werden.
Basierend auf einem Artikel in: Wikipedia.de Seite zurück© biancahoegel.de
Datum der letzten Änderung: Jena, den: 06.04. 2022