Geradenbüschel
Ein Geradenbüschel ist eine besondere Geradenschar des Raumes oder der Ebene.
Geradenbüschel im Raum
Man spricht von einem Geradenbüschel im Raum, wenn alle Geraden durch einen gemeinsamen Punkt, den Büschel- oder Trägerpunkt, verlaufen und in einer gemeinsamen Ebene liegen, die als Trägerebene dieses Geradenbüschels bezeichnet wird. Liegt der Büschel- oder Trägerpunkt im Unendlichen, entsteht als Spezialfall des Geradenbüschels ein Parallelgeradenbüschel.
Das Geradenbüschel ist eines der sieben Grundgebilde der synthetischen projektiven Geometrie.
Geradenbüschel im 2-dimensionalen kartesischen Koordinatensystem
 
  
Man spricht von einem Geradenbüschel in der Ebene, wenn alle Geraden durch einen 
gemeinsamen Punkt dieser Ebene, den Büschelpunkt, verlaufen. Ein 
Geradenbüschel kann damit auch als Sonderfall einer Funktionsschar linearer Funktionen 
aufgefasst werden. Ein Geradenbüschel mit dem Büschelpunkt  
wird durch die folgende Büschelgleichung beschrieben: 
Ein weiterer Sonderfall eines Geradenbüschels liegt vor, wenn der 
Büschelpunkt im Ursprung 
eines kartesischen 
Koordinatensystems liegt. In diesem Fall lautet die Büschelgleichung 
, 
wobei der Parameter 
 
für die Geradensteigung steht. Alle 
Geraden dieses Büschels sind damit zugleich auch Ursprungsgeraden. 

 Wikipedia.de
  
    Wikipedia.de

© biancahoegel.de
Datum der letzten Änderung: Jena, den: 24.01. 2021