Methanbildner

Als Methanbildner oder Methanogene werden Mikroorganismen bezeichnet, bei deren Energiestoffwechsel Methan gebildet wird (Methanogenese); nach heutigem Wissen gehören alle Methanbildner zu den Archaeen (Archaea).[1]

Aus historischen Gründen wurden im Zusammenhang mit den Methanbildnern Bezeichnungen geprägt, die das Wort „Bakterium“ (bzw. eine Wortform davon) integrieren, obgleich kein Methanbildner in die Domäne Bacteria gehört. Das trifft auf früher verwendete Bezeichnungen zu, wie z.B. auf „Methanbakterien“, aber auch auf heute gültige Namen, wie die Gattung Methanobacterium und die Klasse Methanobacteria (siehe Abschnitt #Begriffsabgrenzung).

Physiologie, Ökologie

Die Methanbildner (Methanogene) nutzen die exergone (Energie freisetzende) Methanogenese als Energiequelle. Einige wasserstoffoxidierende Methanogene sind autotroph. Dabei nutzen sie Kohlenstoffdioxid (CO2) als einzige Kohlenstoffquelle bei der Synthese aller zellulären Bestandteile (Anabolismus). Sie assimilieren CO2 auf dem Acetyl-CoA-Weg.[2]

Man unterscheidet acetatspaltende Methanogene und H2-oxidierende Methanogene. Acetatspaltende Methanogene können Methan aus Methylgruppen-haltigen Verbindungen bilden, indem sie die Methylgruppe abspalten und zu Methan reduzieren. Sie besitzen das dafür benötigte Coenzym Methanophenazin. Zu ihnen gehört die Gattung Methanosarcina. H2-oxidierende Methanogene bilden Methan durch Reduktion von CO2 mit Wasserstoff zu Methan und Wasser sowie durch Umsetzung von Ameisensäure (HCOOH); sie besitzen kein Methanophenazin. Zu ihnen gehören die Gattungen Methanococcus, Methanobacterium und Methanopyrus.

Die Methanbildner sind strikt anaerob und stoffwechseln bei unterschiedlichen Temperaturen. Manche Arten betreiben um 0 °C Stoffwechsel (z.B. Methanobacterium arcticum[3] ), viele bei mittleren Temperaturen (z.B. Methanobacterium formicicum,[4] Methanobrevibacter smithii[5] und Methanosarcina barkeri[6] ), während andere Arten bei hohen Temperaturen wachsen können (z.B. Methanothermobacter thermautotrophicus bei 75 °C und Methanocaldococcus jannaschii bei 86 °C).[1] Methanopyrus kandleri kann sogar bei 110 °C noch wachsen.[7] Die meisten Methanogenen benötigen anoxisches, pH-neutrales oder schwach alkalisches Milieu mit mindestens 50 % Wasser. Allerdings gibt es Arten, die mit niedrigem pH-Wert zurechtkommen (z.B. Methanosarcina barkeri[8]) oder einen hohen pH-Wert bevorzugen (z.B. Methanobacterium alcaliphilum[9]). Anoxische Gewässersedimente, wassergesättigte oder -überstaute Böden (z.B. Moore und Reisfelder), Mist, Gülle und der Verdauungstrakt von Wiederkäuern sind besonders gute Lebensräume für Methanogene, sie finden hier für sie wichtige Stickstoffverbindungen, Mineralstoffe und Spurenelemente. Hemmstoffe für Methanbildner sind organische Säuren, Desinfektionsmittel und Sauerstoff.

Weitere Habitate von Methanbildnern sind der Dickdarm von Wirbeltieren, der Verdauungstrakt von Termiten, sowie die Schlammfaulbehälter von Abwasserreinigungs- und Biogasanlagen.

Die Methanbildner stehen an der letzten Stelle der anaeroben Nahrungskette, in der verschiedene Stoffumsetzungen ablaufen. Am Ende wird durch die Aktivität von Methanbildnern Methan gebildet.

Taxonomie

Die Methanbildner sind kein einzelnes Taxon, da ihre Gemeinsamkeit, Methanogenese zu betreiben, nicht automatisch an phylogenetische Verwandtschaft gekoppelt sein muss und moderne Taxonomie danach trachtet, die Verwandtschaftsverhältnisse abzubilden. Nichtsdestotrotz setzt die Methanogenese physiologische Eigenschaften voraus, die es wahrscheinlich machen, dass zwischen verschiedenen Methanbildnern eine ähnliche Genetik, bzw. Verwandtschaft besteht.

Die methanbildenden Mikroorganismen wurden früher auch „Methanbakterien“ genannt, eine Bezeichnung, die durch Wissenszuwachs mehrdeutig geworden ist. Dadurch besteht Verwechslungsgefahr, z.B. mit der Klasse Methanobacteria (siehe Abschnitt #Begriffsabgrenzung).

Als noch keine Möglichkeit bestand, Verwandtschaftsbeziehungen innerhalb der Taxonomie abzubilden, schlug Barker (1956) die Familie Methanobacteriacaea zur Einteilung für alle zu dieser Zeit bekannten Methanogenen vor.[10]

Später wurden Methoden zur Analyse von Verwandtschaftsbeziehungen entwickelt,[11] die 1979 von Balch et al. angewendet werden konnten.[5] Damals wurden die bekannten Methanbildner untereinander, aber noch nicht mit Nicht-Methanbildnern verglichen. Es wurden Familien und erste Ordnungen mit Methanogenen aufgestellt.[5]

Bereits 1986 wurde klar, dass die Methanbildner nicht monophyletisch sind, da eine Ordnung mit Methanogenen enger zu einer Ordnung mit Nicht-Methanbildnern verwandt war als zu anderen Methanbildnern.[A 1][12]

2001 wurden die ersten Klassen von Archaeen innerhalb der Abteilung Euryarchaeota aufgestellt, die Methanogene enthielten.[13] Diese taxonomischen Klassen wurden 2002 nach den Nomenklaturregeln bestätigt.[14]

Bis 2002 wurden fünf Ordnungen mit Methanbildnern (Methanobacteriales, Methanococcales, Methanopyrales, Methanomicrobiales und Methanosarcinales) anerkannt. 2008 kam die sechste Ordnung Methanocellales hinzu. Eine siebte Ordnung mit Methanbildnern, Methanomassiliicoccales, wurde 2013 beschrieben.[A 2][15] Diese Ordnung gehört, wie die zuvor genannten sechs Ordnungen,[2] zur Abteilung der Euryarchaeota.[15]

Die siebente Ordnung (Methanomassiliicoccales; Iino et al. 2013, Klasse Thermoplasmata)[16] wurde bei ihrer Beschreibung in die Klasse Thermoplasmata gestellt.[15] Damit waren die Methanomassiliicoccales die erste Ordnung mit Methanogenen, die in eine Klasse gestellt wurde, die zuvor keine Methanogenen beinhaltete.[15]

Nach der Beschreibung der Methanomassiliicoccales wurden weitere Methanbildner sowohl in der bis dahin einzigen Abteilung Euryarchaeota (z. B. Ordnung Methanonatronarchaeales; Sorokin et al. 2018) als auch in weiteren Abteilungen der Archaeen (siehe unten) beschrieben.

2005 wurden zwei Gruppen von Methanbildnern abgegrenzt, die zueinander weniger Verwandtschaft zeigten als zu Nicht-Methanbildnern; das waren die Klasse-I- und die Klasse-II-Methanogenen.[17] Die „Klasse-I-Methanogenen“ und die „Klasse-II-Methanogenen“ wurden nicht als taxonomischen Klassen nach den Nomenklaturregeln definiert, sondern als Schnittmengen aus physiologischer und phylogenetischer Einteilung.[17] Zu dieser Zeit waren Methanogene nur innerhalb der Abteilung Euryarchaeota bekannt.[17]

Mit der wachsenden Zahl bekannter Archaeen und den Fortschritten bei der Gen-Analyse wurde es 2015 möglich, den üblichen 16S-rRNA-Genen weitere, geeignete Gene hinzu zu fügen, um einen tiefer gehenden Vergleich der Verwandtschaftsbeziehungen durchzuführen.[18] Im Ergebnis wurden zwei Kladen innerhalb der Abteilung Euryarchaeota definiert, die „Superklasse Methanomonada“ und „Superklasse Diaforarchaea“ genannt wurden.[18] Die Klade „Methanomonada“ und die „Klasse-I-Methanogenen“[17] erschienen hinsichtlich ihrer Mitglieder deckungsgleich.[18] Weiterhin hatte der Stammbaum der Euryarchaeota nach dieser phylogenetischen Analyse einen „Ast mit zwei Zweigen“ (eine Klade mit zwei Unterkladen), wobei ein Zweig (bzw. eine Unterklade) die „Superklasse Diaforarchaea“ darstellte, die keine Methanogenen aufwies, während der andere Zweig die Mitglieder der „Klasse-II-Methanogenen“[17] und weitere Archaeen ohne Methanogenese-Eigenschaften enthielt.[18] In Hinblick auf taxonomische Ordnungen waren drei in den „Klasse-I-Methanogenen“ vertreten (Methanobacteriales, Methanococcales und Methanopyrales) und drei andere in den „Klasse-II-Methanogenen“ (Klasse Methanomicrobia: Methanocellales, Methanomicrobiales und Methanosarcinales).[18] Die siebente Ordnung mit methanogenen Euryarchaeota, Methanomassiliicoccales, wurde 2015 noch nicht erfasst.[18]

Zusätzlich zu den Methanbildnern innerhalb des Phylums Euryarchaeota wurden Archaeen mit Methan-Stoffwechsel in neuen Verwandtschaftsgruppen gefunden, die 2014 als Phylum Bathyarchaeota[19] und 2016 als Phylum Verstraetearchaeota[20] bezeichnet wurden. Die Bathyarchaeota wurden vor ihrer Benennung als MCG (Miscellaneous Crenarchaeota group: diverse Crenarchaeota-Gruppe) bezeichnet, da man zuvor von nur zwei Phyla der Archaeen ausging (Euryarchaeota und Crenarchaeota).[19] Innerhalb der Bathyarchaeota, bzw. innerhalb der „diversen Crenarchaeota-Gruppe“ gibt es bisher keine Gattungen oder Arten mit Namen, u.a. weil die Identifizierungen durch indirekte Untersuchungen von Genom-Abschnitten erfolgt sind, statt durch die Isolation von Kulturstämmen.[19] Bei den Verstraetearchaeota gibt es zumindest Kandidaten.[A 3][20]

Neben der Methanogenese gibt es auch andere Arten des Methan-Stoffwechsels (z.B. die anaerobe Methanoxidation) und daher wurde 2016 vorgeschlagen, die Methanentstehung nicht isoliert, sondern als einen Aspekt eines zusammenhängenden Methan-Stoffwechsels zu betrachten.[21] Im Fokus der Betrachtung stand der sogenannte Wood–Ljungdahl-Weg, der in verschiedener Weise bei Archaeen und Bakterien vorkommt und bei dem unter anaeroben Bedingungen Kohlendioxid mithilfe von Wasserstoff reduziert werden kann. Bei Archaeen entsteht dabei Methan (hydrogenotrophe Methanogenese). Der Kerngedanke der Überblicksarbeit[21] besteht darin, dass die hydrogenotrophe Methanogenese der Ausgangspunkt bei den Archaeen gewesen sein könnte und dass Abwandlungen der universellen Enzym-Sets (bzw. der Gene) während der Evolution zu einem Verlust oder zu einer Umdeutung (z.B. zur anaeroben Methanoxidation) geführt haben.

Der Gedanke eines einheitliches Ausgangspunktes[21] wurde 2019 aufgegriffen und es wurde eine umfassender Vergleich von Genen des Methan-Stoffwechsels bei Archaeen in den unterschiedlichen Zweigen dieser Domäne durchgeführt.[22] Die Untersuchung stützte die Annahme, dass es einen evolutionären Ursprung der Archaeen mit hydrogenotropher Methanogenese gegeben haben könnte, u.a. deshalb, weil der vollständige hydrogenotrophe Methanogenese-Weg sowohl bei den Euryarchaeota als auch bei den Verstraetearchaeota gefunden werden konnte, was dafür spricht, dass der gemeinsame Vorfahr dieser entfernt verwandten Gruppen diesen Stoffwechselweg bereits besaß.[22] Andererseits darf der horizontale Gentransfer nicht übersehen werden, der es möglich macht, dass Organismen über Gene verfügen, die sie nicht von ihren Vorfahren geerbt haben.[23]

Im Jahr 2019 wurde mit den Methanoliparia eine weitere Klasse von Methanbildnern unter den Euryarchaeota mit nur einer einzigen Ordnung Methanoliparales vorgeschlagen,[24][25][26] und 2021 gelang es, die ersten Vertreter dieser neuen Klasse zu kultivieren.[27]

Begriffsabgrenzung

„Methanbakterien“ und Methanbildner

Durch Wissenszuwachs wurde der Begriff Methanbakterien mehrdeutig, so dass seine Anwendung heute selten sinnvoll und in vielen Kontexten falsch ist. 

Der Begriff wurde früher für die Methanbildner verwendet: „Methanbakterien“ bezog sich auf zwei Aspekte, die später getrennt gesehen werden mussten:

Barker beschrieb 1956 die Methanbildner als physiologische Gruppe “methane bacteria” (also „Methanbakterien“) und meinte, dass man sie durchaus als physiologische Familie „Methanobacteriaceae“ bezeichnen könne.[10] Zu diesen Zeiten wurde der Begriff “bacteria” (bzw. „Bakterien“) in zwei Bedeutungen verwendet:

  1. zur Bezeichnung aller Mikroben ohne echten Zellkern, da das Stäbchen (lat. bacterium) eine charakteristische Zellform in dieser Gruppe ist (die man heute als Prokaryoten bezeichnet) und
  2. zur Bezeichnung solcher Mikroben ohne echten Zellkern, bei denen die Zellen tatsächlich stäbchenförmig sind.

Barker (1956) verwendete “methane bacteria” in der Bedeutung, dass er alle Mikroben ohne echten Zellkern meinte, die Methan bilden; egal, ob stäbchenförmig oder nicht (aus heutiger Sicht: Prokaryoten, die Methan produzieren).[10]

Es gab damals kaum bessere Einteilungskriterien als morphologische und physiologische, und Barker wendete eine Einteilung an, bei der die Physiologie (Methanogenese) das übergeordnete und die Morphologie (Zellform) das untergeordnete Kriterium war.[10]

Diese Einteilung war willkürlich:

1977 wurden von Woese und Fox drei grundsätzliche Abstammungslinien von Lebewesen vorgestellt: “eubacteria”, “archaebacteria” und “urkaryotes”.[11] Von nun an gab es neben den beiden bisherigen Hauptbedeutungen des Begriffs “bacteria”, der zum einen synonym zum Namen “Prokaryotae” (alle Mikroben ohne echten Zellkern) gebraucht wurde und zum anderen nur die stabförmigen “Prokaryotae” bezeichnete, weitere Bedeutungen. Es gab seitdem „typische Bakterien“[A 4] (“eubacteria”) und „altertümliche Bakterien“[A 5] (“archaebacteria”). Von der neuen Abstammungslinie “archaebacteria” waren zum Zeitpunkt der Veröffentlichung nur Methanbildner untersuchbar.[11]

Zwei Jahre später wurden die Methanbildner von Balch et al. (1979)[5] mit der Methode von Woese und Fox (1977)[11] hinsichtlich ihrer Verwandtschaft neu bewertet. Kurz danach hat die Internationale Vereinigung der mikrobiologischen Gesellschaften (IUMS) bestätigte Listen für erlaubte Namen (Approved Lists, 1980)[28] herausgebracht und neue Namen aus der Arbeit Balch et al. (1979)[5] validiert (1981).[29]

Durch das Hinzukommen neuer Taxa wurde die Möglichkeit stark eingeschränkt, den Begriff „Methanbakterien“ oder “methane bacteria” eindeutig für die Methanbildner anzuwenden. Der Name „Methanobacteriaceae“, den Barker synonym zu “methane bacteria” verwendet hatte, wurde der anerkannte Name einer Familie (Methanobacteriaceae Barker 1956), die innerhalb einer Ordnung stand (Methanobacteriales Balch & Wolfe 1981), die sich neben anderen Taxa befand, in denen Methanbildner vorkamen (z.B. neben der Ordnung Methanococcales Balch & Wolfe 1981). Somit konnte die ehemalige Zuweisung:

die sich aus Barker (1956) ableiten ließ, nicht mehr funktionieren.

1990 erschien eine Arbeit von Woese et al.[30] in welcher der Gedanke von den drei grundsätzlichen Abstammungslinien der Lebewesen laut Woese und Fox (1977)[11] aufgegriffen wurde und in welcher die Domänen Archaea (bis dato Archaebacteria), Bacteria (bis dato Eubacteria) und Eucarya (Eukaryoten) veröffentlicht wurden. 1992 wurde eine Revision des Regelwerks der Nomenklatur für die Mikroben ohne echten Zellkern veröffentlicht (Bacteriological Code, 1990 Revision).[31]

Auf der einen Seite gab es immer mehr Namen für grundsätzliche Abstammungslinien[30][11] und auf der anderen Seite blieb die Ranghöhe von Taxa mit anerkannten Namen auf die Klasse begrenzt;[31] auf der einen Seite brauchte man neue Begriffe,[30][11] um Gemeinsamkeiten und Unterschiede hinsichtlich der Verwandtschaftsverhältnisse darzustellen, auf der anderen Seite brauchte man Stabilität bei den Begriffen.[31] Daher ließ sich die Verwendung von Namen, die die Wörter „Methan“ und „Bakterien“ integrieren, nicht umgehen.

2001 wurden Klassen aufgestellt (z.B. Methanobacteria[32] und Methanococci[33]), die Methanogene enthielten und 2002 betätigt wurden.[14] Gerade die Klasse Methanobacteria sollte im Zweifelsfall am besten mit dem vollständigen Namen (Methanobacteria Boone 2002) angegeben werden. Eine Übersetzung der Methanobacteria könnte „Methanbakterien“ lauten.

Zusammengefasst kann das Homonym „Methanbakterien“ (oder „Methanobakterien“) z.B. Folgendes meinen:

Methanobacteria und Methanbildner

Die Klasse Methanobacteria Boone 2002 ist in Bezug zu den Methanbildnern insofern besonders, als das die Übersetzung „Methanbakterien“ (oder „Methanobakterien“) lauten würde, eine Bezeichnung, die Verwechslungsmöglichkeiten bietet. Namen, die die Wörter „Methan“ und „Bakterium“ (oder Wortformen) integrieren, sind tendenziell mehrdeutig (siehe Abschnitt #„Methanbakterien“ und Methanbildner).

Letztlich wurde der Name der Klasse, „Methanobacteria“ vom Namen der grundlegenden Gattung, „Methanobacterium“ abgeleitet. Die Klasse enthält weitere Taxa, deren Namen sich nur in der Endung unterscheiden (Ordnung „Methanobacteriales“ und Familie „Methanobacteriaceae“). Die Zeichenkette „Methanobacteri“ ist bei allen ineinander geschachtelten Taxa gleich.

Methanobacteria
Systematik
Domäne: Archaeen (Archaea)
Abteilung: Euryarchaeota
Klasse: Methanobacteria
Wissenschaftlicher Name
Methanobacteria
Boone 2002

Die Klasse Methanobacteria wurde bei ihrer Beschreibung (2001)[32] in das Phylum (bzw. in der Abteilung) Euryarchaeota,[13] innerhalb der Domäne Archaea[34] gestellt und 2002 betätigt.[14] Zum Zeitpunkt ihrer Beschreibung enthielten die Methanobacteria ausschließlich Methanogene.[32]

Die Klasse Methanobacteria Boone 2002 hat die Ordnung Methanobacteriales Balch & Wolfe 1981 als Typus. Die Ordnung (Methanobacteriales) und die darin verankerte Familie Methanobacteriaceae Barker 1956 haben jeweils die Gattung Methanobacterium Kluyver & van Niel 1936 als Typus.

Historische Liste

Literatur

Anmerkungen

  1. In Bapteste et al. (2005, Extern PMID 15876569) wurde zur Arbeit von Woese & Olsen (1986, Extern PMID 11542063) wiedergegeben, dass bereits 1986 durch Analyse der 16S-rRNA-Gene bekannt war, dass die Methanbildner nicht monophyletisch sind, weil die damalige, methanbildende Ordnung Methanomicrobiales enger mit der extrem-halophilen, nicht methanogenen Ordnung Halobacteriales verwandt war, als mit anderen Methanbildnern.
  2. Die Ordnung Methanomassiliicoccales wurde von Iino et al. (2013, Extern doi:10.1264/jsme2.ME12189) aufgestellt und innerhalb der Klasse Thermoplasmata verortet. Die Ordnung wurde mit der Typusgattung Methanomassiliicoccus bestätigt (IUMS 2013, Extern doi:10.1099/ijs.0.058222-0). Die Beschreibung der Gattung mit ihrer Typusart Methanomassiliicoccus luminyensis erfolgte 2012 durch Dridi et al. (Extern doi:10.1099/ijs.0.033712-0) und beide wurden bestätigt (IUMS 2012, Extern doi:10.1099/ijs.0.048033-0).
  3. Kandidaten für Namen innerhalb des Phylums Verstraetearchaeota nach Meng et al. (2016, Extern PMID 24108328): Gattung Methanomethylicus mit den Arten M. mesodigestum und M. oleusabulum, Gattung Methanosuratus mit der Art M. petracarbonis, Familie Methanomethyliaceae, Ordnung Methanomethyliales, Klasse Methanomethylia
  4. Typische Bakterien: die Autoren (Woese & Fox, 1977, Extern PMID 270744) sahen die “eubacteria” als typisch an und verwendeten die Vorsilbe „eu“ (“... contains all of the typical bacteria so far characterized, … It is appropriate to call this … eubacteria”).
  5. Altertümliche Bakterien: Der methanogene Phänotyp der “archaebacteria” ließ die Autoren (Woese & Fox, 1977, Extern PMID 270744) an eine erdgeschichtlich altertümliche Epoche denken (“The apparent antiquity of the methanogenic phenotype … to exist on earth 3-4 billion years ago … to name this … archaebacteria”).

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. Hochspringen nach: a b Franziska Enzmann, Florian Mayer, Michael Rother, Dirk Holtmann: Methanogens: biochemical background and biotechnological applications. In: AMB Express. Band 8, Nr. 1, Dezember 2018, ISSN 2191-0855, S. 1, doi:Extern 10.1186/s13568-017-0531-x, Extern PMID 29302756, Extern PMC 5754280 (freier Volltext).
  2. Hochspringen nach: a b Michael T. Madigan, John M. Martinko: Brock – Mikrobiologie, 11. überarbeitete Auflage, Pearson Studium, München 2006, ISBN 3-8273-7187-2 – Übersetzung von Brock – Biology of microorganisms 11. ed. ins Deutsche
  3. V. Shcherbakova, E. Rivkina, S. Pecheritsyna, K. Laurinavichius, N. Suzina: Methanobacterium arcticum sp. nov., a methanogenic archaeon from Holocene Arctic permafrost. In: International Journal of Systematic and Evolutionary Microbiology. Band 61, Nr. 1, 1. Januar 2011, ISSN 1466-5026, S. 144–147, doi:Extern 10.1099/ijs.0.021311-0.
  4. M. P. Bryant, D. R. Boone: Isolation and Characterization of Methanobacterium formicicum MF. In: International Journal of Systematic Bacteriology. Band 37, Nr. 2, 1. April 1987, ISSN 0020-7713, S. 171–171, doi:Extern 10.1099/00207713-37-2-171.
  5. Hochspringen nach: a b c d e f W. E. Balch, G. E. Fox, L. J. Magrum, C. R. Woese, R. S. Wolfe: Methanogens: reevaluation of a unique biological group. In: Microbiological Reviews. Band 43, Nr. 2, Juni 1979, ISSN 0146-0749, S. 260–296, Extern PMID 390357, Extern PMC 281474 (freier Volltext).
  6. M. P. Bryant, D. R. Boone: Emended Description of Strain MST(DSM 800T), the Type Strain of Methanosarcina barkeri. In: International Journal of Systematic Bacteriology. Band 37, Nr. 2, 1. April 1987, ISSN 0020-7713, S. 169–170, doi:Extern 10.1099/00207713-37-2-169.
  7. Margit Kurr, Robert Huber, Helmut König, Holger W. Jannasch, Hans Fricke: Methanopyrus kandleri, gen. and sp. nov. represents a novel group of hyperthermophilic methanogens, growing at 110°C. In: Archives of Microbiology. Band 156, Nr. 4, September 1991, ISSN 0302-8933, S. 239–247, doi:Extern 10.1007/BF00262992.
  8. Sarah E. Hook, André-Denis G. Wright, Brian W. McBride: Methanogens: Methane Producers of the Rumen and Mitigation Strategies. In: Archaea. Band 2010, 2010, ISSN 1472-3646, S. 1–11, doi:Extern 10.1155/2010/945785, Extern PMID 21253540, Extern PMC 3021854 (freier Volltext) – (Extern hindawi.com).
  9. S. Worakit, D. R. Boone, R. A. Mah, M.-E. Abdel-Samie, M. M. El-Halwagi: Methanobacterium alcaliphilum sp. nov., an H2-Utilizing Methanogen That Grows at High pH Values. In: International Journal of Systematic Bacteriology. Band 36, Nr. 3, 1 Juli 1986, ISSN 0020-7713, S. 380–382, doi:Extern 10.1099/00207713-36-3-380.
  10. Hochspringen nach: a b c d e f H. A. Barker: Bacterial fermentations. John Wiley and Sons, New York 1956, S. 1–95 (Extern archive.org).
  11. Hochspringen nach: a b c d e f g C. R. Woese, G. E. Fox: Phylogenetic structure of the prokaryotic domain: the primary kingdoms. In: Proceedings of the National Academy of Sciences of the United States of America. Band 74, Nr. 11, November 1977, ISSN 0027-8424, S. 5088–5090, doi:Extern 10.1073/pnas.74.11.5088, Extern PMID 270744, Extern PMC 432104 (freier Volltext).
  12. C. R. Woese, G. J. Olsen: Archaebacterial phylogeny: perspectives on the urkingdoms. In: Systematic and Applied Microbiology. Band 7, 1986, ISSN 0723-2020, S. 161–177, Extern PMID 11542063.
  13. Hochspringen nach: a b c George M. Garrity, John G. Holt, William B. Whitman, Jyoti Keswani, David R. Boone, Yosuke Koga et al.: Phylum AII. Euryarchaeota phy. nov. In: David R. Boone, Richard W. Castenholz, George M. Garrity (Hrsg.): Bergey’s Manual® of Systematic Bacteriology. Second edition Auflage. Volume one: The Archaea and the Deeply Branching and Phototrophic Bacteria. Springer Verlag, New York 2001, ISBN 978-0-387-98771-2, S. 211, doi:Extern 10.1007/978-0-387-21609-6_17.
  14. Hochspringen nach: a b c d Validation of publication of new names and new combinations previously effectively published outside the IJSEM. International Journal of Systematic and Evolutionary Microbiology. Validation list no. 85. In: IUMS [zuständiges Gremium] (Hrsg.): International Journal of Systematic and Evolutionary Microbiology. Band 52, Pt 3, Mai 2002, ISSN 1466-5026, S. 685–690, doi:Extern 10.1099/00207713-52-3-685, Extern PMID 12054225.
  15. Hochspringen nach: a b c d Takao Iino, Hideyuki Tamaki, Satoshi Tamazawa, Yoshiyuki Ueno, Moriya Ohkuma: Candidatus Methanogranum caenicola: a Novel Methanogen from the Anaerobic Digested Sludge, and Proposal of Methanomassiliicoccaceae fam. nov. and Methanomassiliicoccales ord. nov., for a Methanogenic Lineage of the Class Thermoplasmata. In: Microbes and Environments. Band 28, Nr. 2, 2013, ISSN 1342-6311, S. 244–250, doi:Extern 10.1264/jsme2.ME12189, Extern PMID 23524372, Extern PMC 4070666 (freier Volltext).
  16. IUMS, Validation List no. 154 (A. Oren, G. M. Garrity): List of new names and new combinations previously effectively, but not validly, published. In: International Journal of Systematic and Evolutionary Microbiology. Band 63, Pt 11, 1. November 2013, ISSN 1466-5026, S. 3931–3934, doi:Extern 10.1099/ijs.0.058222-0.
  17. Hochspringen nach: a b c d e Eric Bapteste, Céline Brochier, Yan Boucher: Higher-level classification of the Archaea: evolution of methanogenesis and methanogens. In: Archaea (Vancouver, B.C.). Band 1, Nr. 5, Mai 2005, ISSN 1472-3646, S. 353–363, Extern PMID 15876569, Extern PMC 2685549 (freier Volltext).
  18. Hochspringen nach: a b c d e f Céline Petitjean, Philippe Deschamps, Purificación López-García, David Moreira, Céline Brochier-Armanet: Extending the Conserved Phylogenetic Core of Archaea Disentangles the Evolution of the Third Domain of Life. In: Molecular Biology and Evolution. Band 32, Nr. 5, Mai 2015, ISSN 1537-1719, S. 1242–1254, doi:Extern 10.1093/molbev/msv015.
  19. Hochspringen nach: a b c Jun Meng, Jun Xu, Dan Qin, Ying He, Xiang Xiao: Genetic and functional properties of uncultivated MCG archaea assessed by metagenome and gene expression analyses. In: The ISME Journal. Band 8, Nr. 3, März 2014, ISSN 1751-7362, S. 650–659, doi:Extern 10.1038/ismej.2013.174, Extern PMID 24108328, Extern PMC 3930316 (freier Volltext).
  20. Hochspringen nach: a b Inka Vanwonterghem, Paul N. Evans, Donovan H. Parks, Paul D. Jensen, Ben J. Woodcroft: Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota. In: Nature Microbiology. Band 1, Nr. 12, Dezember 2016, ISSN 2058-5276, doi:Extern 10.1038/nmicrobiol.2016.170.
  21. Hochspringen nach: a b c Guillaume Borrel, Panagiotis S. Adam, Simonetta Gribaldo: Methanogenesis and the Wood–Ljungdahl Pathway: An Ancient, Versatile, and Fragile Association. In: Genome Biology and Evolution. Band 8, Nr. 6, Juni 2016, ISSN 1759-6653, S. 1706–1711, doi:Extern 10.1093/gbe/evw114, Extern PMID 27189979, Extern PMC 4943185 (freier Volltext).
  22. Hochspringen nach: a b Bojk A. Berghuis, Feiqiao Brian Yu, Frederik Schulz, Paul C. Blainey, Tanja Woyke: Hydrogenotrophic methanogenesis in archaeal phylum Verstraetearchaeota reveals the shared ancestry of all methanogens. In: Proceedings of the National Academy of Sciences. Band 116, Nr. 11, 12. März 2019, ISSN 0027-8424, S. 5037–5044, doi:Extern 10.1073/pnas.1815631116, Extern PMID 30814220, Extern PMC 6421429 (freier Volltext).
  23. Joanna M. Wolfe, Gregory P. Fournier: Horizontal gene transfer constrains the timing of methanogen evolution. In: Nature Ecology & Evolution. Band 2, Nr. 5, Mai 2018, ISSN 2397-334X, S. 897–903, doi:Extern 10.1038/s41559-018-0513-7.
  24. Guillaume Borrel, Panagiotis S. Adam, Luke J. McKay, Lin-Xing Chen, Jillian F. Banfield, Simonetta Gribaldo, et al.: Wide diversity of methane and short-chain alkane metabolisms in uncultured archaea. In: Nature Microbiology. Band 4, Nr. 4, April 2019, ISSN 2058-5276, S. 603–613, doi:Extern 10.1038/s41564-019-0363-3, Extern PMID 30833729, Extern PMC 6453112 (freier Volltext) – (Epub 4. März 2019).
  25. Rafael Laso-Pérez, Cedric Hahn, Daan M. van Vliet, Halina E. Tegetmeyer, Florence Schubotz, Nadine T. Smit, Thomas Pape, Heiko Sahling, Gerhard Bohrmann, Antje Boetius, Katrin Knittel, Gunter Wegener: Anaerobic Degradation of Non-Methane Alkanes by “Candidatus Methanoliparia” in Hydrocarbon Seeps of the Gulf of Mexico. In: mBio. Band 10, Nr. 4, 20. August 2019, S. e01814–19, doi:Extern 10.1128/mBio.01814-19, Extern PMID 31431553 (Extern pure.mpg.de [PDF]). Dazu:
    Extern Alles in einer Zelle: Die Mikrobe, die Öl in Gas umwandelt. Pressemitteilung des Max-Planck-Instituts für Marine Mikrobiologie Bremen vom 20. August 2019.
  26. Wissenslücke beim Ethan-Abbau geschlossen: UFZ-Forscher entdecken einzelligen Organismus, der am Meeresboden Ethan oxidiert, Pressemitteilung des Helmholtz Zentrums für Umweltforschung (UFZ) vom 28. März 2019 über Ca. Argoarchaeum ethanivorans.
  27. Zhuo Zhou, Cui-jing Zhang, Peng-fei Liu, Lin Fu, Rafael Laso-Pérez, Lu Yang, Li-ping Bai, Jiang Li, Min Yang, Jun-zhang Lin, Wei-dong Wang, Gunter Wegener, Meng Li, Lei Cheng: Non-syntrophic methanogenic hydrocarbon degradation by an archaeal species. In: Nature. Band 601, Nr. 7892, 2022, S. 257–262, doi:10.1038/s41586-021-04235-2 (Epub 22. Dezember 2021). Dazu:
    Extern Vom Ölfeld ins Labor: Wie eine besondere Mikrobe Erdöl in Gase zerlegt, auf marum.de (Zentrum für Marine Umweltwissenschaften der Universität Bremen) vom 22. Dezember 2021.
  28. Hochspringen nach: a b P. H. A. Sneath, Vicki McGowan, V. B. D. Skerman (editing authors) on behalf of The Ad Hoc Committee of the Judicial Commission of the ICSB: Approved Lists of Bacterial Names. In: International Journal of Systematic and Evolutionary Microbiology. Band 30, Nr. 1, 1. Januar 1980, S. 225, doi:Extern 10.1099/00207713-30-1-225.
  29. Hochspringen nach: a b Validation of the Publication of New Names and New Combinations Previously Effectively Published Outside the IJSB: List No. 6. In: IUMS [zuständige Instanz] (Hrsg.): International Journal of Systematic Bacteriology. Band 31, Nr. 2, 1. April 1981, ISSN 0020-7713, S. 215–218, doi:Extern 10.1099/00207713-31-2-215.
  30. Hochspringen nach: a b c C. R. Woese, O. Kandler, M. L. Wheelis: Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. In: Proceedings of the National Academy of Sciences of the United States of America. Band 87, Nr. 12, Juni 1990, ISSN 0027-8424, S. 4576–4579, doi:Extern 10.1073/pnas.87.12.4576, Extern PMID 2112744, Extern PMC 54159 (freier Volltext).
  31. Hochspringen nach: a b c IUMS [zuständiges Gremium]: International Code of Nomenclature of Bacteria: Bacteriological Code, 1990 Revision. ASM Press, Washington (DC) 1992, ISBN 978-1-55581-039-9, Extern PMID 21089234 (englisch, Extern nih.gov).
  32. Hochspringen nach: a b c d David R. Boone: Class I. Methanobacteria class. nov. In: David R. Boone, Richard W. Castenholz, George M. Garrity (Hrsg.): Bergey’s Manual® of Systematic Bacteriology. 2. Auflage. Volume one: The Archaea and the Deeply Branching and Phototrophic Bacteria. Springer Verlag, New York 2001, S. 213, doi:Extern 10.1007/978-0-387-21609-6.
  33. David R. Boone: Class II. Methanococci class. nov. In: David R. Boone, Richard W. Castenholz, George M. Garrity (Hrsg.): Bergey’s Manual® of Systematic Bacteriology. Second edition Auflage. Volume one: The Archaea and the Deeply Branching and Phototrophic Bacteria. Springer Verlag, New York 2001, S. 235, doi:Extern 10.1007/978-0-387-21609-6.
  34. Hochspringen nach: a b Volume one: The Archaea and the Deeply Branching and Phototrophic Bacteria. In: David R. Boone, Richard W. Castenholz, George M. Garrity (Hrsg.): Bergey’s Manual® of Systematic Bacteriology. Second edition Auflage. Springer Verlag, New York 2001, ISBN 978-0-387-98771-2, doi:Extern 10.1007/978-0-387-21609-6.
  35. A. J. Kluyver & C. B. Van Niel: Prospects for a natural system of classification of bacteria. In: Zentralblatt für Bakteriologie Parasitenkunde Infektionskrankheiten und Hygiene. Abteilung II. Band 94, 1936, S. 369–403.
  36. H. A. Barker: Bacterial fermentations. John Wiley and Sons, New York 1956, S. 1–95.
  37. J. P. Euzéby, B. J. Tindall: Nomenclatural type of orders: corrections necessary according to Rules 15 and 21a of the Bacteriological Code (1990 Revision), and designation of appropriate nomenclatural types of classes and subclasses. Request for an opinion. In: International Journal of Systematic and Evolutionary Microbiology. Band 51, Pt 2, März 2001, ISSN 1466-5026, S. 725–727, doi:Extern 10.1099/00207713-51-2-725, Extern PMID 11321122.
  38. The nomenclatural types of the orders Acholeplasmatales, Halanaerobiales, Halobacteriales, Methanobacteriales, Methanococcales, Methanomicrobiales, Planctomycetales, Prochlorales, Sulfolobales, Thermococcales, Thermoproteales and Verrucomicrobiales are the genera Acholeplasma, Halanaerobium, Halobacterium, Methanobacterium, Methanococcus, Methanomicrobium, Planctomyces, Prochloron, Sulfolobus, Thermococcus, Thermoproteus and Verrucomicrobium, respectively. Opinion 79. In: Judicial Commission of the International Committee on Systematics of Prokaryotes (Hrsg.): International Journal of Systematic and Evolutionary Microbiology. Band 55, Pt 1, Januar 2005, ISSN 1466-5026, S. 517–518, doi:Extern 10.1099/ijs.0.63548-0, Extern PMID 15653928.
Trenner
Basierend auf einem Artikel in: Extern Wikipedia.de
Seitenende
Seite zurück
© biancahoegel.de
Datum der letzten Änderung: Jena, den: 01.04. 2024