Wavelet-Paket-Transformation
Die Wavelet-Paket-Transformation ist eine Erweiterung der schnellen Wavelet-Transformation (FWT) und dient wie diese in der digitalen Signalverarbeitung der Analyse und Kompression digitaler Signale. In der FWT wird ein zeitdiskretes Eingangssignal mit einer Abtastrate F mittels einer Wavelet-Filterbank (z.B. der Daubechies-Wavelets) in einen Tiefpasskanal L und einen Bandpasskanal H mit halber Abtastrate F/2 aufgespalten und dieses Vorgehen für den Tiefpasskanal rekursiv wiederholt. So entstehen im darauffolgenden Schritt aus dem Kanal L die Kanäle LL und LH mit Abtastrate F/4, aus dem Kanal LL im nächsten Schritt die Kanäle LLL und LLH und so weiter.
Bei der Wavelet-Paket-Transformation werden nun auch die Bandpasskanäle aufgespalten, sodass im zweiten Rekursionsschritt nicht nur LL und LH, sondern auch die Kanäle HL und HH entstehen. Im dritten Schritt entstehen so acht Teilkanäle usw. Die Teilkanäle des Ergebnisses und der Zwischenschritte können in einem binären Baum angeordnet werden.
![]() |
Paketbaum mit Filter g für den L-Kanal und h für den H-Kanal |
Diese Transformation kann dazu dienen, aus einer 2-Kanal-DWT wie z.B. den Daubechies-Wavelets eine M-Kanal-DWT zu erhalten, wobei M eine Potenz von zwei ist, der Exponent wird Tiefe des Paket-Baums genannt. Dieses Verfahren wird in der Breitbanddatenübertragung als DWT-OFDM bzw. DWPT-OFDM als Alternative zur schnellen Fourier-Transformation in der FFT-OFDM angewandt.
Hat die zugrundeliegende Wavelet-Transformation eine Skalierungsfunktion
φ mit Tiefpassfilter
(L-Kanal) und Bandpassfilter
(H-Kanal), so ergeben sich die Wavelets der Kanäle zu
wobei
der Operator der Verschiebung (shift) um 1 in Richtung wachsender
-Werte
ist, d.h.
.
Potenzen von
sind dann Verschiebungen um den Exponenten der Potenz, Laurent-Polynome in
entsprechen den jeweiligen Linearkombinationen der verschobenen Funktionen.
Bis hier sind die Funktionen
und
identisch mit den in der FWT auftretenden. Im zweiten Schritt ergeben sich neue
Funktionen
Ist das Spektrum
von
nahezu optimal auf das Basisband
beschränkt und sind
und
gute frequenzselektive digitale
Filter für die sich 1-periodisch wiederholenden Intervalle
bzw.
,
so wird das Spektrum von
auf
konzentriert sein, das von
auf
,
das von
auf
,
d.h. die Frequenzbänder der Kanäle sind in
,
jedes mit Breite 1/2, in der Reihenfolge LL, LH, HH, HL angeordnet.
Im dritten Schritt dann
usw.
In der folgenden Grafik wurden die Wavelets der dritten Stufe dargestellt,
die sich aus dem Daubechies-12-Tap-Wavelet D12 ergeben, der Übersichtlichkeit
halber ganzzahlig verschoben. Daneben die Amplituden der Fourier-Transformierten
der einzelnen Wavelets. Man kann aus den Spektren im Amplitudenbereich oberhalb
0,7 die Aufteilung des Frequenzbandes
in die acht Teilkanäle der Breite 1/2 mit der Reihenfolge LLL, HLL, HHL, LHL,
LHH, HHH, HLH, LLH ablesen. Dies entspricht einer Variante eines Gray-Codes.
![]() |
![]() |



© biancahoegel.de
Datum der letzten Änderung: Jena, den: 19.02. 2020