Hahn-Jordan-Zerlegung

In der Maßtheorie, einem Teilgebiet der Mathematik, dass sich mit der Verallgemeinerung von Volumenbegriffen beschäftigt, beschreibt die Hahn-Jordan-Zerlegung wie man ein signiertes Maß in einen negativen und einen positiven Teil zerlegen kann. Teilweise wird die Zerlegung auch als zwei separate Aussagen angegeben, man nennt sie dann den Hahnschen Zerlegungssatz und den Jordanschen Zerlegungssatz. Die beiden Sätze sind eng miteinander verbunden. Der Hahnsche Zerlegungssatz wurde von Hans Hahn 1921 bewiesen, die Benennung des Jordanschen Zerlegungssatzes bezieht sich auf Marie Ennemond Camille Jordan, der 1881 gezeigt hat, dass sich eine Funktion beschränkter Variation als Differenz zweier monoton wachsender Funktionen darstellen lässt.

Hahnscher Zerlegungssatz

Aussage

Sei (X,\mathcal{A}) ein Messraum und \mu ein signiertes Maß auf diesem Messraum.

Dann existiert eine Partition der Grundmenge X in eine Positive Menge P und eine Negative Menge  N , also {\displaystyle X=P\cup N} und {\displaystyle P\cap N=\emptyset }.

Bemerkung

Die Zerlegung des Grundraumes ist bis auf eine \mu -Nullmenge eindeutig. Ist also {\displaystyle P^{*},N^{*}} eine weitere Hahn-Zerlegung, so ist {\displaystyle P\triangle P^{*}=N\triangle N^{*}} und {\displaystyle \mu (P\triangle P^{*})=\mu (N\triangle N^{*})=0}. Dabei bezeichnet {\displaystyle \triangle } die symmetrische Differenz.

Variation

Mittels des Hahnschen Zerlegungssatzes lassen sich die Variation, die positive Variation und die negative Variation definieren. Die Variation wird teils auch Totalvariation oder totale Variation genannt. Diese Bezeichnung ist jedoch zweideutig, da sie teilweise auch für die aus der Variation konstruierte Norm, die Totalvariationsnorm, verwendet wird.

Definition

Ist \mu ein signiertes Maß mit Hahn-Zerlegung {\displaystyle N,P}, so heißt

{\displaystyle \mu ^{+}(A):=\mu (A\cap P)}

die positive Variation von \mu ,

{\displaystyle \mu ^{-}(A):=-\mu (A\cap N)}

die negative Variation von \mu und

{\displaystyle |\mu |(A):=\mu ^{+}(A)+\mu ^{-}(A)}

die Variation von \mu .

Bemerkungen

Jordanscher Zerlegungssatz

Der Jordansche Zerlegungssatz fasst noch einmal die Zerlegung des signierten Maßes zusammen. Er lautet: ist \mu ein signiertes Maß, so ist

{\displaystyle \mu =\mu ^{+}-\mu ^{-}}

und {\displaystyle \mu ^{+}} und {\displaystyle \mu ^{-}} sind singulär zueinander, also {\displaystyle \mu ^{+}\perp \mu ^{-}}.

Trenner
Basierend auf einem Artikel in: Wikipedia.de
Seitenende
Seite zurück
©  biancahoegel.de
Datum der letzten Änderung:  Jena, den: 04.10. 2018