Volldisjunktion
Als Volldisjunktion (auch: Maxterm) bezeichnet man in der Aussagenlogik einen
speziellen Disjunktionsterm,
d.h. eine Anzahl von Literalen,
die alle durch ein logisches
Oder ()
verknüpft sind. Dabei müssen alle
Variablen der betrachteten
-stelligen
Booleschen
Funktion im Disjunktionsterm vorkommen, um von einer Volldisjunktion
sprechen zu können. Beispiele sind:
Volldisjunktionen lassen sich zu einer konjunktiven Normalform zusammensetzen.
Vergleich Minterm / Maxterm
In folgender Tabelle ist der Unterschied zwischen der Maxterm- und Mintermdarstellung ersichtlich:
| Index | Minterm | Maxterm | |
|---|---|---|---|
| 0 | 0 0 0 | ||
| 1 | 0 0 1 | ||
| 2 | 0 1 0 | ||
| 3 | 0 1 1 | ||
| 4 | 1 0 0 | ||
| 5 | 1 0 1 | ||
| 6 | 1 1 0 | ||
| 7 | 1 1 1 |
Realisierung von Schaltungen mit Mintermen / Maxtermen:
| Minterm | Maxterm | |
|---|---|---|
| 0 | NOR-Gatter | AND-Gatter |
| 1 | OR-Gatter | NAND-Gatter |
Es existieren auch Vollkonjunktionen.


© biancahoegel.de
Datum der letzten Änderung: Jena, den: 05.11. 2020