Absolute Temperatur

Physikalische Größe
Name Absolute Temperatur
(Thermodynamische Temperatur)
Formelzeichen der Größe T
Formelzeichen der Dimension θ
Größen- und
Einheitensystem
Einheit Dimension
SI Kelvin(K) θ
Planck Planck-Temperatur ħ1/2·c1/2·G-1/2·k-1/2

Absolute Temperatur, auch thermodynamische Temperatur, ist eine Temperaturskala, die sich auf den physikalisch begründeten absoluten Nullpunkt bezieht. Er ist ein Grundbegriff der Thermodynamik und der Physikalischen Chemie. Im Rahmen des Internationalen Einheitensystems wird sie in der Einheit Kelvin gemessen, in den USA wird auch die Rankine-Skala verwendet.

Da der absolute Nullpunkt die tiefst mögliche Temperatur darstellt, die nur theoretisch erreicht werden kann (siehe dritter Hauptsatz der Thermodynamik), stellt die Kelvin-Skala eine Verhältnisskala dar. Manche anderen Temperaturskalen hingegen beziehen sich auf einen willkürlich festgelegten Nullpunkt, wie die Celsius-Skala, deren Nullpunkt ursprünglich der Gefrierpunkt von Wasser war, der nach der Kelvin-Skala bei 273,15 K liegt.

Thermodynamische Definition

Die thermodynamische Temperatur eines physikalischen Systems im thermischen Gleichgewicht wird formal mit Hilfe des Wirkungsgrades von Wärmekraftmaschinen definiert. Die folgenden zwei Forderungen definieren die thermodynamische Temperatur.

 \frac{T_A}{T_B}=\frac{Q_A}{Q_B}

Die hinter dieser Temperaturdefinition stehende empirische Beobachtung ist, dass zwei Wärmekraftmaschinen, die im Wettbewerb um den besten Wirkungsgrad zwischen zwei gegebenen Wärmebädern jeweils konstanter Temperatur arbeiten, einen ähnlichen Wirkungsgrad aufweisen. Je mehr sich beide Parteien bemühen, Energieverluste ihrer Maschine zu minimieren, desto geringer fallen die noch möglichen Steigerungen des Wirkungsgrades aus und desto geringer die Unterschiede zwischen den Konkurrenten. Bemerkenswert daran ist, dass das auch gilt, wenn die Arbeitsweise der konkurrierenden Maschinen so verschieden sind wie Dampfturbine, Stirlingmotor und Peltier-Element. Diese Definition hat also den Vorteil der Universalität. Zu jedem gegebenen Temperaturbereich kann ein physikalischer Prozess mit dort hohem Wirkungsgrad ausgewählt werden, bei tiefen Temperaturen etwa magnetische Effekte.

Herleitung aus dem allgemeinen Gasgesetz

Auch aus dem Verhalten idealer Gasekann auf die absolute Temperatur geschlossen werden.

Die absolute Temperatur kann dabei als Grenzwert dargestellt werden:

T=\lim_{p \to 0}\frac{p\cdot v}{R}

wobei p den Druck, v das molare Volumen und R die Gaskonstante bezeichnet. Beim Grenzwert Druck gegen Null zeigen die Gasteilchen keine Wechselwirkung mehr untereinander, was man auch als ein ideales Gas bezeichnet.

Logische Konsistenz der Temperaturdefinition

Die logische Konsistenz dieser Temperaturdefinition ist eine Folge des zweiten Hauptsatzes der Thermodynamik. Es gilt nämlich:

\frac{T_A}{T_B}\cdot\frac{T_B}{T_C}=\frac{T_A}{T_C}
Lassen wir nun eine erste Wärmekraftmaschine zwischen A und B und eine zweite Wärmekraftmaschine zwischen B und C operieren. Die erste Maschine entnehme dem Reservoir A eine Wärmemenge Q_A und führe dem Reservoir B die Abwärme Q_B zu. Die zweite Maschine entnehme dem Reservoir B genau die gleiche Wärmemenge Q_B und führe dem Reservoir C die Abwärme Q_C zu. In der Bilanz wird also dem Reservoir B gleich viel Wärme zugeführt wie entnommen. Das System aus beiden Maschinen kann damit als eine Wärmekraftmaschine zwischen A und C aufgefasst werden. Aus der Gleichung
\frac{Q_A}{Q_B}\cdot\frac{Q_B}{Q_C}=\frac{Q_A}{Q_C}
folgt mit Hilfe der Definition der Temperaturquotienten die obige Konsistenzbedingung.

Statistische Definition und Entropie

Die statistische Definition der Temperatur nach Boltzmann setzt die absolute Temperatur in einen Zusammenhang mit der Entropie S, die ein logarithmisches Maß für die Anzahl der einem isolierten System zugänglichen Mikrozustände \Omega (also das Phasenraumvolumen) bei vorgegebenem Makrozustand angibt:

S = k_{B} ln (\Omega)

wobei der Proportionalitätsfaktor k_B die Boltzmann-Konstante bezeichnet. Die absolute Temperatur ist dann der Kehrwert der partiellen Ableitung der Entropie S nach der inneren Energie U:

\frac 1T = \frac {\partial S}{\partial U}

Für alle reversiblen Wechselwirkungen, bei denen nur Wärme ausgetauscht wird, gilt dann:

dS = \frac {\partial S}{\partial U} dU = \frac {dU}T

woraus

dU = \delta Q_{rev} = T dS

sowie die Formulierung durch Clausius folgt:

dS = \frac{\delta Q_{rev}} T

Das \delta-Symbol kennzeichnet dabei ein unvollständiges Differential.

Die Temperatur in der Statistischen Mechanik

Eng verwandt mit diesem Begriff der Thermodynamischen Temperatur ist die Temperatur in der Statistischen Mechanik: Ein System der Statistischen Mechanik im thermischen Gleichgewicht bei der Temperatur T wird durch eine Wahrscheinlichkeitsdichte  e^{-\frac{H}{k_{\rm B}T}}/Z beschrieben. Dabei bezeichnet H die Energiefunktion, also in der Klassischen Physik die Hamilton-Funktion, in der Quantenphysik den Hamilton-Operator. Weiter bezeichnet k_{\rm B} die Boltzmann-Konstante. Die Normierungskonstante Z wird Zustandssumme genannt. Der Term e^{-\frac{H}{k_{\rm B}T}} heißt Boltzmann-Faktor.

Scheinbar negative Werte

Allerdings finden negative absolute Temperaturen als rein rechnerisches Hilfsmittel durchaus Anwendung. So kann man zum Beispiel den Zustand einer Besetzungsinversion mit diesem Hilfsmittel recht einfach beschreiben. Dies ist allerdings nur möglich, da es sich hier um keinen Zustand im thermodynamischen Gleichgewicht handelt. Ideen dazu wurden schon in den 1950er Jahren von Edward Mills Purcell und Robert Pound sowie von Norman Ramsey verfolgt.

Logarithmische Skala

Rudolf Plank schlägt im „Handbuch der Kältetechnik“ alternativ eine logarithmische Temperaturskala vor, bei der keine „tiefst mögliche“ Temperatur auftritt. Der Nullpunkt entspricht dem Schmelzpunkt des Eises. Darunter erstrecken sich die Minusgrade bis minus unendlich.

„[…] Wenn man jetzt das Magnetfeld plötzlich entfernt, so tritt der thermomagnetische Abkühlungseffekt ein. Auf diese Weise wurde mit Kaliumchromalaun eine Temperatur von 0,05 K erzielt. Im Jahre 1935 ist man sogar bereits zu 0,005 K vorgedrungen.[…] Um den erreichten Fortschritt richtig zu beurteilen, müßte man eigentlich die logarithmische Temperaturskala, wie sie von Lord Kelvin vorgeschlagen worden ist anwenden. Demnach würde eine Senkung von 100 K auf 10 K dieselbe Bedeutung zukommen, wie […] von 1 K auf 0,1 K.“



Basierend auf einem Artikel in: externer Link Wikipedia.de
Seitenende
Seite zurück
©  biancahoegel.de
Datum der letzten Änderung: Jena, den: 01.02. 2016