Schrödingergleichung

Die Schrödingergleichung ist die der ungestörten zeitlichen Entwicklung von nichtrelativistischen Quantensystemen zugrundeliegende Differentialgleichung. Sie beschreibt die Dynamik des quantenmechanischen Zustands eines Systems, solange an diesem keine Messung vorgenommen wird. Sie ist damit eine grundlegende Gleichung der nichtrelativistischen Quantenmechanik.

Die Gleichung wurde 1926 von Erwin Schrödinger (1887–1961) zuerst als Wellengleichung aufgestellt und schon bei ihrer ersten Anwendung erfolgreich zur Erklärung der Spektren des Wasserstoffatoms genutzt.


\mathrm{i}\hbar\frac{\partial}{\partial t} |\,\psi (t) \rangle = \hat{H} |\,\psi (t) \rangle.
Die Schrödingergleichung bildet das Fundament für fast alle praktischen Anwendungen der Quantenmechanik

Die Schrödingergleichung besagt, dass die zeitliche Veränderung eines Zustands durch seine Energie bestimmt ist. In der Gleichung tritt die Energie nicht als skalare Größe auf, sondern als Operator (Hamiltonoperator), der auf den Zustand angewandt wird.

Wenn das Quantensystem ein klassisches Analogon hat (z.B. Teilchen im dreidimensionalen Raum), lässt sich der Hamiltonoperator nach rezeptartigen Regeln aus der klassischen Hamiltonfunktion gewinnen. Für manche Systeme werden Hamiltonoperatoren auch direkt nach quantenmechanischen Gesichtspunkten konstruiert (Beispiel: Hubbard-Modell).

Als Spezialfall der zeitlichen Entwicklung beschreibt die Schrödingergleichung die Zustände eines Quantensystems, bei denen sich das Betragsquadrat der Wellenfunktion mit der Zeit nicht ändert (stationäre Zustände, Eigenzustände des Hamiltonoperators), und ermöglicht die Berechnung der durch solche Zustände definierten Energieniveaus.

Die Schrödingergleichung bildet das Fundament für fast alle praktischen Anwendungen der Quantenmechanik. Seit 1926 gelang mit ihr die Erklärung vieler Eigenschaften von Atomen und Molekülen (bei denen die Elektronenwellenfunktionen als Orbitale bezeichnet werden) sowie von Festkörpern (Bändermodell).

Allgemeine Form der Schrödingergleichung

In ihrer allgemeinsten Form (s.o.) bezeichnet \mathrm{i} die imaginäre Einheit, \hbar die reduzierte Plancksche Konstante, \tfrac{\partial}{\partial t} die partielle Ableitung nach der Zeit und \hat{H} den Hamiltonoperator des Systems. Der Hamiltonoperator wirkt in einem Hilbertraum, die zu bestimmende Größe |\,\psi (t) \rangle ist ein Zustandsvektor in diesem Raum. Diese generische Form der Schrödingergleichung gilt auch in der relativistischen Quantenmechanik und in der Quantenfeldtheorie. In letzterem Fall ist der Hilbertraum ein Fockraum.

Schrödingergleichung in der Ortsdarstellung

Die nach ihm benannte Gleichung wurde von Schrödinger 1926 postuliert. Ausgangspunkt dabei waren die auf Louis de Broglie zurückgehende Vorstellung von Materiewellen und die Hamilton-Jacobi-Theorie der klassischen Mechanik. Die Wirkung S der klassischen Mechanik wird dabei mit der Phase einer Materiewelle identifiziert. Sobald typische Abstände kleiner als die Wellenlänge sind, spielen Beugungsphänomene eine Rolle und die nicht mehr adäquate klassische Mechanik muss durch eine Wellenmechanik ersetzt werden.

Formal entsteht die Schrödingergleichung in der Ortsdarstellung nach dem Korrespondenzprinzip aus der Hamiltonfunktion (Ausdruck für die Energie) des betrachteten Problems.


E = \frac{\mathbf{p}^2}{2m} + V(\mathbf{r},t)

durch Ersetzen der klassischen Größen Energie, Impuls und Ort durch die entsprechenden quantenmechanischen Operatoren (Korrespondenzprinzip):


\begin{matrix} E &\rightarrow& \hat E &=& \mathrm{i}\hbar \frac{\partial}{\partial t} \\
\mathbf{p} &\rightarrow& \mathbf{\hat p} &=& -\mathrm{i}\hbar \nabla \\
\mathbf{r} &\rightarrow& \mathbf{\hat r} &=& \mathbf{r}\end{matrix}

Anschließendes Anwenden auf die unbekannte Wellenfunktion \psi=\psi(\mathbf{r},t) ergibt


\mathrm i \hbar \frac{\partial \psi}{\partial t} = - \frac{\hbar^2}{2m}\Delta \psi + V \psi
.

Auf die gleiche Weise kann die Hamilton-Funktion in einen Hamilton-Operator umgewandelt werden.

Historisch gesehen ging Schrödinger von Louis de Broglies Beschreibung freier Teilchen aus und führte in seiner Arbeit Analogien zwischen Atomphysik und elektromagnetischen Wellen, in Form von De-Broglie-Wellen, ein:


\psi(\mathbf{r},t) = A \; \exp \left(-\frac{\mathrm{i}}{\hbar} \; (E t - \mathbf{p}\cdot \mathbf{r})\right)
,

wobei A eine Konstante ist. Diese Wellenfunktion ist eine Lösung der eben genannten Schrödingergleichung mit V(\mathbf{r},t) = 0. In der üblichen statistischen Interpretation der Quantenmechanik (begründet von Max Born) gibt ihr Betragsquadrat |\psi|^2 die Aufenthaltswahrscheinlichkeitsdichte des Teilchens an.

Eine andere Möglichkeit, die Schrödingergleichung aufzustellen, benutzt den von Richard Feynman eingeführten Begriff des Pfadintegrals. Diese alternative Herleitung betrachtet die Wahrscheinlichkeiten für die verschiedenen Bewegungen (Pfade) des zu untersuchenden Teilchens von einem Ort A nach B und führt damit wieder zu derselben Schrödingergleichung. Auch hierbei spielt die klassische Wirkung S eine zentrale Rolle.

Erläuterungen

Mit der Schrödingergleichung wurde die Ad-hoc-Konstruktion des bohrschen Atommodells überwunden (wie zuvor schon mit der umständlicheren Heisenberg'schen Matrizenmechanik). Die diskreten Energieniveaus des Wasserstoffatoms, die im bohrschen Modell gewissen klassischen Bahnen eines Elektrons im Coulombpotential des Atomkerns zugeordnet werden müssen, ergeben sich im Rahmen der Schrödingergleichung als Eigenwerte der Schrödingergleichung für ein Elektron im Potential des Atomkerns.

Während die Bahn \mathbf{r}(t) eines Teilchens in der klassischen Mechanik durch die Newtonsche Bewegungsgleichung bestimmt ist, liefert in der Quantenmechanik die Schrödingergleichung statt dessen eine Wahrscheinlichkeitsverteilung |\psi\left(\mathbf{r}, t\right)|^2 für den Aufenthaltsort des Teilchens. Man spricht manchmal veranschaulichend davon, dass das Teilchen über den Raum delokalisiert sei. Als umfassendere Theorie muss die Quantenmechanik allerdings die klassische Mechanik enthalten. Eine Form dieser Korrespondenz wird durch das Ehrenfest-Theorem hergestellt. Das Theorem besagt u.a., dass der Mittelwert der Teilchenkoordinate die klassische Bewegungsgleichung erfüllt. Relevant und evident wird die Korrespondenz bei lokalisierten kohärenten Wellenpaketen. Solche Wellenpakete lassen sich bei höheren Quantenzahlen, also z.B. bei höheren Anregungszuständen des Wasserstoffatoms konstruieren.

In der Schrödingergleichung kommen die Wellenfunktion und die Operatoren im sogenannten Schrödinger-Bild vor. Im Heisenberg-Bild werden stattdessen Bewegungsgleichungen für die Operatoren selbst betrachtet. Diese Bewegungsgleichungen werden als Heisenbergsche Bewegungsgleichung bezeichnet. Die beiden Formulierungen sind mathematisch äquivalent.

Die Schrödingergleichung ist deterministisch, das heißt, dass ihre Lösungen bei Vorgabe von Anfangsbedingungen eindeutig sind. Andererseits sind die Lösungen der Schrödingergleichung nach der Kopenhagener Deutung statistische Größen, aus denen nur Aussagen über die Mittelwerte von Messergebnissen in gleichartigen Versuchsanordnungen folgen. Nach der Kopenhagener Deutung der Quantenmechanik liegt dies nicht an einem Mangel der Messanordnung, vielmehr ist dies durch die Natur selbst bedingt.


 
Seitenende
Seite zurück
Datum der letzten Änderung: Jena, den: 26.12. 2017