Schwefelverbindungen

In Verbindungen tritt Schwefel in allen Oxidationsstufen zwischen -II (Sulfide) und +VI (Sulfate, Schwefeltrioxid und Schwefelsäure) auf.

Wasserstoffverbindungen

Schwefelwasserstoff (H2S) ist ein farbloses, in geringen Konzentrationen nach faulen Eiern riechendes, giftiges Gas, das durch Reaktion von Sulfiden (MxSy) mit starken Säuren, zum Beispiel Salzsäure (HCl), entsteht. Es kommt als natürlicher Begleiter von Erdgas vor und entsteht in großen Mengen bei der Hydrodesulfurierung von Erdölfraktionen. Schwefelwasserstoff ist eine schwache Säure. Es ist brennbar, farblos und in Wasser wenig, in Alkohol etwas besser löslich. Schwefelwasserstoff und Metalloxide oder -hydroxide bilden Sulfide wie Zinnober (HgS) und Bleisulfid (PbS). Die Schwerlöslichkeit der Schwermetallsulfide wird in der analytischen Chemie im Trennungsgang zur Fällung der Metalle der Schwefelwasserstoffgruppe genutzt.

Disulfan (H2S2). Es bildet viele Salze wie zum Beispiel Pyrit. Seine Salze (Disulfide) enthalten das Anion S22−. Disulfan ist das erste Glied der homologen Reihe der Polysulfane.

Sauerstoffverbindungen

Schwefeldioxid ist das Anhydrid der Schwefligen Säure und ein farbloses, schleimhautreizendes, stechend riechendes und sauer schmeckendes, giftiges Gas. Es ist sehr gut wasserlöslich und bildet mit Wasser in sehr geringem Maße Schweflige Säure.

Schwefeltrioxid ist das Anhydrid der Schwefelsäure. Es bildet bei Normbedingungen farblose, nadelförmige Kristalle, die äußerst hygroskopisch sind und sehr heftig mit Wasser reagieren. Bei 44,45 °C siedet Schwefeltrioxid.

Schwefelmonoxid ist nur in verdünnter Form beständig. In konzentrierter Form wandelt es sich schnell in Dischwefeldioxid um. Es wurde im interstellarem Raum nachgewiesen.

Sauerstoffsäuren und Salze

Schwefel bildet eine Reihe von Oxosäuren, von denen die Schwefelsäure die mit Abstand größte technische Bedeutung hat. Die vorkommenden Oxidationsstufen reichen von +VI (Schwefelsäure) bis nahezu 0 (Oligosulfandisulfonsäuren, HSO3SxSO3H). Die Säuren sind nicht alle in Reinform zu isolieren, bilden aber eine Reihe von Salzen und deren Hydrido-Isomeren. So ist Schweflige Säure als Reinstoff nicht zu isolieren, Sulfit- und Hydrogensulfitsalze dagegen sind als stabile Verbindungen bekannt.

Säuren des Typus H2SOn
Oxidationsstufe
des Schwefels
Struktur Säuren Salze
+II sulfoxylsäure.svg Sulfoxylsäure
H2SO2
Sulfoxylate
+IV Schweflige Säure.svg Schweflige Säure
H2SO3
Sulfite
+VI schwefelsäure.svg Schwefelsäure
H2SO4
Sulfate
+VI peroxomonoschwefelsäure.svg Peroxo(mono)schwefelsäure
H2SO5
Peroxosulfate

 

Säuren des Typus H2S2On
Mittlere Oxidationsstufe
des Schwefels
Struktur Säuren Salze
+I Thioschweflige Säure Thioschwefelige Säure
H2S2O2
Thiosulfite
(unbekannt)
+II Thioschwefelsäure Thioschwefelsäure
H2S2O3
Thiosulfate
+III Dithionige Säure Dithionige Säure
H2S2O4
Dithionite
+IV Dischweflige Säure Dischweflige Säure
H2S2O5
Disulfite
+V Dithionsäure Dithionsäure
H2S2O6
Dithionate
+VI Dischwefelsäure Dischwefelsäure
H2S2O7
Disulfate
+VI Peroxodischwefelsäure Peroxodischwefelsäure
H2S2O8
Peroxodisulfate

Stickstoffverbindungen

Tetraschwefeltetranitrid

Tetraschwefeltetranitrid S4N4 ist ein goldroter Feststoff, der als Ausgangsverbindung für verschiedene Schwefel-Stickstoffverbindungen dient.

Dischwefeldinitrid S2N2 liegt in Form eines viergliedrigen, rechteckig-planaren Ringes vor. Die Verbindung kann durch Reaktion von Tetraschwefeltetranitrid mit Silber gewonnen werden.

Polythiazyl (SN)x war das erste bekannte anorganische Polymer mit elektrischer Leitfähigkeit. Bei sehr niedrigen Temperaturen unterhalb von 0,26 K ist das Material supraleitend. Polythiazyl wird aus Dischwefeldinitrid gewonnen.

Schwefelstickstoff (SN) wurde als Bestandteil von intergalaktischen Molekülwolken nachgewiesen. Im Labor kann es durch elektrische Entladungen in einem Stickstoff-Schwefel-Gas gewonnen werden.

Halogenverbindungen

Schwefelhalogenide des Typs SXn (n = 2, 4) sind von Fluor und Chlor bekannt, Fluor bildet außerdem ein Hexafluorid. Daneben ist eine Reihe von gemischten Halogenverbindungen bekannt. Auch Sauerstoff-Halogenverbindungen des Typs SOX2 (Thionylhalogenide), SO2X2 (Sulfurylhalogenide) und SOX4 sind bekannt. Vom Iod ist nur eine Iodpolysulfanverbindung des Typs I2Sn bekannt.

Schwefelfluoride

Schwefelhexafluorid (SF6) ist ein farb- und geruchloses, ungiftiges Gas, das unbrennbar ist und sich äußerst reaktionsträge verhält. Es wird unter anderem als Isoliergas in der Mittel- und Hochspannungstechnik eingesetzt. Das Gas wird als Tracer zum Nachweis der Windströmungen und Geruchsausbreitungsuntersuchungen eingesetzt. Wegen des hohes Treibhauspotenzials ist der Einsatz aber umstritten.

Schwefeltetrafluorid (SF4) ist ein farbloses, nicht brennbares Gas mit stechendem Geruch. Es zersetzt sich in Wasser unter Bildung von Fluorwasserstoff. Es wirkt als schwache Lewis-Säure und bildet zum Beispiel 1:1 Addukte mit organischen Basen wie Pyridin und Triethylamin.

Schwefeldifluorid (SF2) ist ein farbloses Gas, das schnell zu Dischwefeldifluorid (S2F2) dimerisiert. Das letztere liegt in Form von zwei gasförmigen Isomeren vor, dem Thiothionylfluorid (S=SF2) und dem Difluordisulfan (FSSF).

Schwefelchloride

Dischwefeldichlorid (S2Cl2) wird durch Chlorierung von elementarem Schwefel gewonnen. Dischwefeldichlorid wird zur Herstellung von Kautschuk-Vulkanisationsmitteln sowie anderen organischen Schwefelverbindungen verwendet. Es dient als Katalysator bei der Chlorierung von Essigsäure.

Schwefeldichlorid (SCl2), eine tiefrote Flüssigkeit, wird durch Umsetzung von Dischwefeldichlorid mit Chlorgas hergestellt. Es wird gelöst in Schwefelkohlenstoff (CS2) zur Kaltvulkanisation von Kautschuk verwendet. Während des Ersten Weltkrieges wurde Schwefeldichlorid zur Herstellung des Kampfstoffes S-Lost verwendet.

Schwefeltetrachlorid (SCl4) wird durch direkte Chlorierung von Schwefel mit Chlor hergestellt. Es ist im festen Zustand und unter -30 °C stabil, darüber zersetzt es sich, wobei Chlor und Schwefeldichlorid entstehen.

Gemischte Schwefelhalogenide und Oxohalogenide

Schwefelpentafluorchlorid (SF5Cl), ein farbloses Gas, dient in der präparativen Chemie zur Darstellung von organischen Komponenten mit Kohlenstoff-Schwefel-Doppel- und Dreifachbindungen.

Schwefelpentafluorbromid (SF5Br), ein farbloses Gas, kann aus Schwefeltetrafluorid, Silber(II)-fluorid und elementarem Brom hergestellt werden.

Die Thionylhalgenide OSX2 sind vom Fluor, Chlor und Brom bekannt, die Sulfurylhalogenide vom Fluor und Chlor.

Organoschwefelverbindungen

Organoschwefelverbindungen sind organische Verbindungen, die Schwefel enthalten. Die Struktur, das Vorkommen und die Anwendungen der Organoschwefelverbindungen sind vielfältig. Viele Naturstoffe, darunter zwei essentielle Aminosäuren, sind organische Schwefelverbindungen. Organische Schwefelverbindungen treten in fossilen Brennstoffen, etwa in Form von Thiolen oder Thioethern auf. Anionische Tenside sind in der Regel Natrium- oder Ammoniumsalze von Sulfonsäuren oder Schwefelsäurehalbestern. In der Flotationstechnik eignen sich bestimmte Schwefelverbindungen wie Xanthogenate, Dithiophosphorsäureester, Mercaptane oder Alkylsulfonate als so genannte Sammler.

Die Kohlenstoff-Schwefel-Einfachbindung ist sowohl länger als auch schwächer als die Kohlenstoff-Kohlenstoff-Bindung. Die Bindungslängen liegen zwischen 183 pm in Methanthiol und 174 pm in Thiophen. Die Dissoziationsenergie der Kohlenstoff-Schwefel-Bindung beträgt für Thiomethan 312,5 kJ/mol., die Dissoziationsenergie für Dimethylsulfid und Dimethylether 305 und 322 kJ/mol.

Struktur von L-Aliin, ein natürlicher, S-chiraler Inhaltsstoff von Knoblauch

Die organische Chemie des Schwefels ist vielfältig. Praktisch zu allen bekannten Kohlenstoff-Sauerstoff-Verbindungen bestehen die organischen Schwefel-Analoga. Diese unterscheiden sich allerdings in ihren Reaktionen oft beträchtlich von den Sauerstoffverbindungen.

Bekannte Organoschwefelverbindungen sind Thiole, die auch Mercaptane genannt werden. Thiole entstehen beispielsweise bei der Umsetzung von Kaliumhydrogensulfid mit Alkylhalogeniden. Die Alkylierung von Thioharnstoff mit Alkylhalogeniden und anschließender Umsetzung mit Natronlauge führt ebenfalls zu Thiolen und Freisetzung von Harnstoff. Thiole sind Bestandteil vieler Naturstoffe wie den Abwehrstoffen des Stinktiers (3-Methylbutanthiol) und weisen oft einen unangenehmen Geruch auf. Sie lassen sich leicht durch Oxidation in Disulfide oder über die Stufen der Sulfensäuren und Sulfinsäuren in Sulfonsäuren überführen. Disulfid-Brücken stabilisieren die Struktur von Proteinen und Peptidhormonen wie Insulin. Beim Legen einer Dauerwelle werden die Cystinbindungen im Keratin durch Reduktion mit Thioglycolsäure aufgebrochen. Danach werden die Haare in die gewünschte Form gebracht. Durch nachfolgende Oxidation der Thiolgruppen im Keratin mit Wasserstoffperoxid zu Disulfidbrücken werden die Haare in dieser neuen Form fixiert. Knoblauch, Lauch und andere Pflanzen enthalten eine Reihe von schwefelorganischen Wirkstoffen wie Alliin, die antibiotische Eigenschaften aufweisen.

Thioether lassen sich beispielsweise durch die Reaktion von Alkalisulfid mit Alkylhalogeniden oder durch die Pummerer-Umlagerung herstellen. Mit Alkylhalogenid im Überschuss entstehen Trialkylsulfoniumsalze. Thioether lassen sich leicht zu Sulfoxiden und Sulfonen oxidieren. Sulfoxide mit zwei unterschiedlichen Alkylresten sind am Schwefelatom chiral. Das freie Elektronenpaar fungiert dabei als vierter Substituent.

Johnson-Corey-Chaykovsky Reaktion

Als Heterocyclische Verbindung ist zum Beispiel Thiophen bekannt. Auch Kohlenstoff-Schwefel-Sauerstoff-Verbindungen wie Sulfoxide, die wie Dimethylsulfoxid als Lösungsmittel verwendet werden, sind verbreitet. Sulfonsäuren beziehungsweise deren Salze, die Sulfonate, finden als Tenside Verwendung. In der organischen Synthese werden Thioacetale als Synthons zur Umpolung der Carbonylfunktion, zum Beispiel in der Corey-Seebach-Reaktion eingesetzt. In der Johnson-Corey-Chaykovsky Reaktion wird eine Carbonylfunktion mittels Schwefel-Yliden in ein Epoxid überführt.

Der Chemie der Riech- und Geschmacksstoffe sind eine Vielzahl schwefelhaltiger organoleptischer Stoffe bekannt. Sie hat etliche Stoffe aus natürlichen Quellen identifiziert und nutzt das Heteroelement zum Designen neuer Riechstoffe und zur Ermittlung olfaktorischer Struktur-Wirkungsbeziehungen. Der niedrigste Geruchsschwellenwert (10-4ppb), der je in natürlichen Aromen gemessen wurde, stammt von dem aus der Grapefrucht isolierten Thioterpineol, dem Schwefel-Analogon des α-Terpineols. Geringfügig schwächere Potenz hat das strukturell ähnliche 8-Thio-p-menth-3-on mit dem typischen Geruch der schwarzen Johannisbeere. Übertroffen werden diese Stoffe vom Thiamin-Photolyten bis(2-Methyl-3-furyl)disulfid, der zu den geruchsstärksten Verbindungen der organischen Chemie gehört. Im Galbanharz finden sich ausgeprägt riechende Thioester als Strukturverwandte der Senecioester. Ein dem Perillen analoges monoterpenoides Thiophen ist enthalten im Hopfen. Im Shiitake begegnen wir dem Aromastoff 1,2,3,5,6-Pentathiepan (Lenthionin). Spargel enthält 1,2-Dithiolane. Rettich und Radieschen setzen das 4-Methylsulfinyl-3-butenyl-isothiocyanat frei.

Das farb- und geruchslose Erdgas wird mit Tetrahydrothiophen odoriert, um im Leckagefall eine leichte geruchliche Wahrnehmung zu garantieren. Ausströmendes Erdgas kann dadurch auch bei kleinsten Leckagen wahrgenommen werden.

Metal und Radieschen setzen das 4-Methylsulfinyl-3-butenyl-isothiocyanat frei.

Das farb- und geruchslose Erdgas wird mit Tetrahydrothiophen odoriert, um im Leckagefall eine leichte geruchliche Wahrnehmung zu garantieren. Ausströmendes Erdgas kann dadurch auch bei kleinsten Leckagen wahrgenommen werden.

Metallorganische Schwefelverbindungen

Schwefel verfügt als Ligand in der metallorganischen Chemie über mannigfaltige Koordinationsmöglichkeiten. Die Metall-Schwefel-Komplexe gelten als Modellverbindungen für das Studium von Metalloenzymen. Schwefel tritt in den Komplexen als verbückender Mono-, Di- und Polysulfidoligand, als Sulfid, als Schwefelring verschiedener Größe oder als η2-Disulfid auf.

Basierend auf einem Artikel in Wikipedia.de


 
Seitenende
Seite zurück
©  biancahoegel.de; 
Datum der letzten Änderung: Jena, den: 09.12. 2021